
Part II

Classical Representation for
Planning

26/361

Outline of Part II

I. Set-Theoretic Representation

II. Classical Representation

III. State Variable Representation

IV. An introduction to PDDL

27/361

Reminder: AI Planning Ambition

Ambition: Write one program that can solve all search problem.

Solver on the shelf

Some
new

problems

A description
 of the

problem
in planning
language

Solution
competitive with
a human-made

specialized
program

Problem: How represent a planning problem ?

28/361

Many Classical Planning Representations

• There is three different ways to represent classical planning
problems:

1. Set theoric representation, each state of the world is a set of
propositions and each action is a syntactic expression specifying
which propositions belong to the state in order for the action to be
applicable and which propositions the action will add or remove to
change the state of the world.

2. Classical representation, the states and the actions are like the ones
described for set theoric representation except that first order literals
and logical connectives are used instead propositions.

3. State variable representation, each state is represented by a tuple of
value n state variables {x1, . . . , xn} and each action is represented by
a partial function that map this tuple into some other tuple of values
of the n states.

• Each of them is equivalent in expressive power.

29/361

I. Set-Theoretic Representation

Planning Domains, Problems and Solutions

A set theoric representation relies on a finite set of proposition symbols
based on logical fromalism that are intented to represent various
propositions about the world. We need to define the basic notion of

• Planning Domain

• Planning Problem

• Planning Solution

30/361

Planning Domains Definition

Let L = {p1, . . . , pn} be a finite set of proposition symbols. A set theoric
planning domain on L is a restricted state transition system ⌃ = (S ,A, �)

such that:

• S ✓ 2L, i.e., each state s is a subset of L. If p 2 s then p holds in s.
Otherwise p does not hold in s (Closed World Assumption).

• Each action a 2 A is a triple of subset of L written a = (precond(a),
effect�(a), effect+(a)) and effect�(a) effect+(a) are disjoint.

• S has the property that if s 2 S , then, for every action a that is
applicable to s, the set (s - effect�(a)) [effect+(a) 2 S .

• The state transition function is �(s, a) = (s - effect�(a)) [
effect+(a) if a 2 A is applicable to s 2 S .

31/361

Planning Problem Definition

A set theoric planning problem is a triple P = (⌃, s0, g) where

• s0, the initial state, is a member of S

• g ✓ L is a set of propositions called goal propositions that give the
requirements that a state must be satisfy in order to be a goal state.
The set of goal states is Sg = {s 2 S | g ✓ s}.

32/361

Planning Problem Example

33/361

Here is one possible set theoric
representation of the domain
described in the robot docker
example.

crane1

p1
p2c2

c1

r1

crane2

loc1 loc2

crane1

p1
p2c1

r1

crane2

loc1 loc2

c2?

Initial State

plan?

Goal State

Example (Set of propositions)
L = {onrobotc1, holdingcr1c1, at1, at2} where

• ontopc1p1 means that the container c1 is on
top of p1

• onrobotc1 means that the container c1 is on
the robot

• holdingcr1c1 means that crane cr1 is holding
the container c1

• at1 means that the robot is at loc1

• at2 means that the robot is at loc2...

Planning Problem Example

34/361

Here is one possible set theoric
representation of the domain
described in the robot docker
example.

crane1

p1
p2c2

c1

r1

crane2

loc1 loc2

crane1

p1
p2c1

r1

crane2

loc1 loc2

c2?

Initial State

plan?

Goal State

Example (Set of states)
S = {s0, . . . , s5} where

• s0 = {holdingcr1c1, at1} ;
s1 = {holdingcr1c1, at2} ;
s2 = {onrobotc1, at1}
s3 = {holdingcr2c1, at1} ;
s4 = {onrobot, at1} ;
s5 = {onrobot, at2},
etc.

Planning Problem Example

35/361

Here is one possible set theoric
representation of the domain
described in the robot docker
example.

crane1

p1
p2c2

c1

r1

crane2

loc1 loc2

crane1

p1
p2c1

r1

crane2

loc1 loc2

c2?

Initial State

plan?

Goal State

Example (Set of actions)
A = {take, put, load, unload, move1, move2}
where

• loadc1p1 = ({ontopc1p1}, {ontopc1p1},
{holdingcr1c1})

• unloadc1p1 = ({holdingcr1c1},
{holdingcr1c1}, {ontopc1p1})

• move1 = ({at2}, {at2}, {at1})

• move2 = ({at1}, {at1}, {at2})

Plan Definition

Definition (Plan)
A plan is any sequence of action ⇡ = ha1, . . . , aki, where k � 0. The
length of the plan |⇡| = k , the number of actions. If ⇡1 = ha1, . . . , aki

and ⇡2 = ha01, . . . , a
0
j
i are plans, then their concatenation is a plan

⇡1 · ⇡2 = ha1, . . . , ak , a01, . . . , a
0
j
i.

The state produced by applying ⇡ to a state s is the state that is
produced by applying the action of ⇡ in the order given. We will denote
this by extending the state transition function � as follows:

�(s,⇡) =

8
>><

>>:

s ifk = 0

�(�(s, a1, ha2, . . . , aki) ifk > and a1 is applicable to s

undefined otherwise

36/361

Plan Solution Definition

Definition (Plan Solution)
Let P = (⌃, s0, g) be a planning problem. A plan ⇡ is a solution for P
if g ✓ �(s0,⇡).

A solution can have two proprieties:

1. A solution plan ⇡ is redundant if there is a proper subsequence of ⇡
that is also a solution of P.

2. A solution plan ⇡ is minimal if no other solution plan for P contains
fewer actions that ⇡.

37/361

Plan Solution Example

Example
In the planning domain described previously, suppose the initial state is
s0 = {ontopc1p1, at1} and g = {onrobotc1, at2}. Let

• ⇡1 = hmove2,move2i

• ⇡2 = hloadc1p1, unloadc1p1i

• ⇡3 = hloadc1p1,move2,move1, unloadc1p1, loadc1p1,move2, i

• ⇡4 = hloadc1p1,move2,move1,move2i

• ⇡5 = hloadc1p1,move2, i

Then ⇡1 is not a solution because it is not applicable to s0; ⇡2 is not a
solution because although it is applicable to s0, the resulting state is not
a goal state; ⇡3 is a redundant solution; ⇡4 and ⇡5 are solutions but only
is minimal.

38/361

Properties of the Set Theoric Representation

1. Readability. On advantage of the set theoric representation is that it
provides a more concise and readable representation of the state
transition system than we would get by enumerating all of the states
and transition explicitly.

2. Computation. A propositions in a state s is assumed to persist in
�(s, a) unless explicitly mentioned in the effects of a. The effects are
defined with two subsets: effect�(a) and effect+(a). Hence, the
transition function � and the applicability conditions of actions rely
on very early computable set operations: if precond(a) ✓ s;, then
�(s, a) = (s� effect�(a)) [effect+(a).

3. Expressibility. A significant problem is that not every state transition
system ⌃ has a set theoric representation.

39/361

II. Classical Representation

Classical Representation

The classical representation scheme generalize the set theoric
representation scheme using notation derived from first order logic.

• States are represented as set of logicals atoms that ere true or false
within some interpretation.

• Actions are represented by p lanning operators that change the
truth values of theses atoms.

40/361

States Representation

The classical planning language is built on a first order language L.

Definition (State)
A state is a set of ground atoms of L. L has no function symbols.
Thus the set S of all possible states is guaranteed to be finite. As in
the set of theoric representation scheme, an atom p holds in s iff p 2 s.
If g is a set of literals, we will say that s satisfies g (denoted s |= g)
when there is a substitution � such that every positive literal of �(g) is
in s and no negated literal of �(g) is in s.

41/361

States Representation Example

r1

loc2loc1

crane1

c1

c2

c3

c1

p1

p2

Figure 1: Initial state s0 = { attached(p1, loc1), attached(p2, loc1); in(c1, p1,
in(c3, p1), top(c3, p1), on(c3, c1), on(c1, pallet) in(c2, p2), top(c2, p2),
on(c2,pallet), belong(crane1, loc1), empty(crane1), adjacent(loc1, loc2),
adjacent(loc2, loc1), at(r1, loc2), occupied(loc2), unloaded(r1)}.

42/361

Planning Operator Definition

The planning operators define the transition function � of the state
transition system.

Definition (Planning Operator)
A planning operator is a triple o = (name(o), precond(o), effects(o))
whose elements are follows:

• name(o), the name of the operator, is a syntactic expression of the
form n(x1, . . . , xk) where n is a symbol called an operator symbol (n
is unique in L) and x1, . . . , xk are all variable symbols that appear
anywhere in o.

• precond(o) and effects(o), the preconditions and effects of o,
respectively are generalizations of the preconditions and the effects
of the set theory action, i.e., instead of being sets of proposition
they are sets of literals.

43/361

Planning Operator Example

Example (Take operator)
The planning operator take(k ,l ,c ,d ,p) can be defined as follow:

;; crane k at location l takes c off of d in pile p

take(k ,l ,c ,d ,p)
precond: belong(k ,l), attached(p,l), empty(k), top(k), on(c ,d)
effects: holding(k ,c), ¬empty(k), ¬in(c ,p), ¬top(c ,p),

¬on(c ,d), top(d ,p)

44/361

Action Definition

Definition (Action)
An action is any ground instance of planning operator. If a is an action
and s is a state such that precond+(a) ✓ s and precond�(a) \ s = ;,
then a is applicable to s, and the result of applying a to s is the state:

�(s, a) = (s � effects�(a)) [effects+(a)

Thus, like in set theoric planning, state transitions can easily be
computed using set operations.

45/361

Action Example

Example
The action take(crane1,loc1,c3,c1,p1) is applicable to the state s0 of
the figure 42. The result is the state s5 = �(s0,
take(crane1,loc1,c3,c1,p1)) shown by the figure below.

c3

r1

loc2loc1

crane1

c1

c2

c1

p1

p2

Figure 2: s5 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
holding(crane1,c3), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2), unloaded(r1)}.

46/361

Classical Planning Domains Definition

Definition (Classical Planning Domain)
Let L be a first order language that has finitely many predicate symbols
and constraint symbols. A classical planning domain in L is a restricted
state transition system ⌃ = (S ,A, �) such that:

• S ✓ 2all ground atoms ofL

• A = {all ground instances of the operators in O} where O is a set of
operators as defined earlier

• �(s, a) = (s � effects�(a)) [effects+(a) if a 2 A is applicable to
s 2 S and otherwise �(s, a) is undefined

• S is closed under �, i.e., if s 2 S , then for every action a that is
applicable to s, �(s, a) 2 S .

47/361

Classical Planning Problems Definition

Definition (Classical Planning Problem)
A classical planning problem is a triple P = (O, s0, g) where:

• O is the set of planning operators

• s0, the initial state, is any state in S

• g , the goal, is any set of ground literals

• Sg = {s 2 S | s satisfies g}

48/361

Plan Example

Example
Consider the following plan:

⇡1 = h take(crane1, loc1,c3,c1,p1),

move(r1,loc2,loc1),

load(crane1,loc1,c3,r1) i

This plan is applicable to the state s0 shown in figure 42 producing the
state s6. We verify that

g1 = {loaded(r1,c3), at(r1,loc1)}

is included in s6.

49/361

Action Example

loc2loc1

crane1

c1

c2

c1

p1

p2r1
c3

Figure 3: s6 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc1),
occupied(loc1), loaded(r1)}.

50/361

Extending the Classical Representation

Classical planning formalism is very restricted, extensions to it are needed
in order to describe interesting domains. The most important extensions
are :

• Typing variables

• Conditional Planning Operators

• Quantified expression

• Disjunctive preconditions

• Axiomatic Inference

• etc.

A planning langage, called PDDL, has been developed to express all these
extensions (PDDL stands for Planning Domain Description Langage).

51/361

III. State Variable
Representation

State Variables

• State variables representation are équivalent to the previous ones

• The main motivation here is to rely on functions instead of logical
relations

• Consider as example the relation at(r1, l) that hold in a state s if
and only if the robot r1 is in a location location l :

• The robot can be at only one location at the same time, e.g, we
cannot have in the same state at(r1, loc1) and at(r1, loc2)

• It cound be avantageaous to reprensent this relation using a function
that map the set of states into the set of locations

• rlocr1 : S ! locations

• rlocr1(s) gives the unique location of r1 in a state s.
• rlocr1 is a state variable

52/361

Operators and Actions

The definition of operators and actions differ slightly.

Definition (Planning Operator)
A planning operator is a triple o = (name(o), precond(o), effects(o))
whose elements are follows:

• name(o), the name of the operator, is a syntactic expression of the
form n(x1, . . . , xk) where n is a symbol called an operator symbol (n
is unique in L) and x1, . . . , xk are all variable symbols that appear
anywhere in o.

• precond(o) is a set of expressions on state variables and relations.

• effects(o) is the set of assignement of values to state variables of the
form x(t1, . . . , tk) tk+1, where each ti is a terme in the
apppropriate range.

53/361

Planning Operator Example

Example (Move operator)
The planning operator move(r ,l ,m) can be defined as follow:

;; robot r at location l move to an adjacent location m

move(r ,l ,m)
precond: rloc(r) = l , adjacent(l ,m)
effects: rloc(r) m

54/361

Domains and Problems (1/2)

By extention planning domains and problems are defined as follows:

Definition (Planning Domains)
A Planning domain is a restricted state-transition system ⌃ = (S ,A, �)

such that:

• S ✓ ⇧x2XDx
, where Dx is the tange of the ground state variable x ; a

stat s is noted s = {(x = c) | x 2 X}, where w 2 Dx .

• A = {allgroundinstanceofoperators}; an action q is applicable to a
state s iff every expression (x = c) in precond(a) is also in s.

• �(s, a) = {(x = c) | x 2 X}, where c is a specified assignement
w c in effect(a), otherwise (x = c) 2 s.

• S is closed under �.

55/361

Domains and Problems (2/2)

Definition (Planning Problem)
A Planning problem is a triple P = (⌃, s0, g), where s0 is an initial state
in S and the goal g is a set of expressions on the state variables in X .

56/361

IV. An introduction to PDDL

What is PDDL ?

PDDL = Planning Domain Description Language

• standard encoding language for “classical” planning tasks

Components of a PDDL planning task:

• Objects: Things in the world that interest us.

• Predicates: Properties of objects that we are interested in;
can be true or false.

• Initial state: The state of the world that we start in.

• Goal specification: Things that we want to be true.

• Actions/Operators: Ways of changing the state of the world.

57/361

How to Put the Pieces Together

Planning tasks specified in PDDL are separated into two files:

1. A domain file for predicates and actions.

2. A problem file for objects, initial state and goal specification.

58/361

Domain Files

Domain files look like this:

(d e f i n e (domain <domain name>)
<PDDL code f o r p r e d i c a t e s >
<PDDL code f o r f i r s t a c t i on >
[. . .]

<PDDL code f o r l a s t a c t i on >
)

<domain name> is a string that identifies the planning domain.

Examples on the web: Logistics, Depots, Gripper, Blocksworld, etc.

59/361

Problem Files

Problem files look like this:

(d e f i n e (problem <problem name>)
(: domain <domain name>)
<PDDL code f o r ob j e c t s >
<PDDL code f o r i n i t i a l s t a t e >
<PDDL code f o r goa l s p e c i f i c a t i o n >

)

<problem name> is a string that identifies the planning task, e.g. gripper
with 4 balls to move.

<domain name> must match the domain name in the corresponding
domain file.

Examples on the web: Logistics, Depots, Gripper, Blocksworld, etc.

60/361

Running Example: Gripper task with four balls

There is a robot that can move between two rooms and pick up or drop
balls with either of his two arms. Initially, all balls and the robot are in
the first room. We want the balls to be in the second room.

• Objects: The two rooms, four balls and two robot arms.

• Predicates: Is x a room? Is x a ball? Is ball x inside room y? Is
robot arm x empty? [...]

• Initial state: All balls and the robot are in the first room. All robot
arms are empty. [...]

• Goal specification: All balls must be in the second room.

• Actions/Operators: The robot can move between rooms, pick up a
ball or drop a ball.

61/361

Gripper task: Objects

Objects:

• Rooms: rooma, roomb

• Balls: ball1, ball2, ball3, ball4

• Robot arms: left, right

In PDDL:

(: o b j e c t s rooma roomb − room
b a l l 1 b a l l 2 b a l l 3 b a l l 4 − b a l l
l e f t r i g h t − g r i p p e r)

62/361

Gripper task: Predicates

Predicates:

• at-robby(x) - true iff x is a room and the robot is in x

• at-ball(x, y) - true iff x is a ball, y is a room, and x is in y

• free(x) - true iff x is a gripper and x does not hold a ball

• carry(x, y) - true iff x is a gripper, y is a ball, and x holds y

In PDDL:

(: p r e d i c a t e s (at−robby ?x − room)
(at−b a l l ? x −room ?y − b a l l)
(f r e e ?x − g r i p p e r) (c a r r y ?x − g r i p p e r ?y − b a l l))

63/361

Gripper task: Initial state

Initial state:

• free(left) and free(right) are true.

• at-robby(rooma), at-ball(ball1, rooma), . . . are true.

• Everything else is false.

In PDDL:

(: i n i t (f r e e l e f t) (f r e e r i g h t)
(at−robby rooma)
(at−b a l l b a l l 1 rooma) (at−b a l l b a l l 2 rooma)
(at−b a l l b a l l 3 rooma) (at−b a l l b a l l 4 rooma))

64/361

Gripper task: Goal specification

Goal specification:

• at-ball(ball1, roomb), . . ., at-ball(ball4, roomb) must be
true.

• Everything else we don’t care about.

In PDDL:

(: goa l (and (at−b a l l b a l l 1 roomb)
(at−b a l l b a l l 2 roomb)
(at−b a l l b a l l 3 roomb)
(at−b a l l b a l l 4 roomb))

65/361

Gripper task: Movement operator

Action/Operator:

• Description: The robot can move from x to y .

• Precondition: at-robby(x) are true.

• Effect: at-robby(y) becomes true and at-robby(x) becomes
false. Everything else doesn’t change.

In PDDL:

(: a c t i o n move
: pa ramete r s (? x − room ?y − room)
: p r e c o n d i t i o n (and (at−robby ?x))
: e f f e c t (and (at−robby ?y) (not (at−robby ?x))))

66/361

Gripper task: Pick-up operator

Action/Operator:

• Description: The robot can pick up x in y with z .

• Precondition: at-ball(x, y), at-robby(y) and free(z) are
true.

• Effect: carry(z, x) becomes true, at-ball(x, y) and free(z)
become false. Everything else doesn’t change.

In PDDL:

(: a c t i o n p ick−up
: pa ramete r s (? x − b a l l ? y − room ?z − g r i p p e r)
: p r e c o n d i t i o n (and (at−b a l l ? x ?y) (at−robby ?y) (f r e e ? z))
: e f f e c t (and (c a r r y ? z ?x)

(not (at−b a l l ? x ?y)) (not (f r e e ? z))))

67/361

Gripper task: Drop operator

Action/Operator:

• Description: The robot can drop x in y from z .

• Precondition: at-robby(y), carry(z, x) are true.

• Effect: at-ball(x, y) and free(z) becomes true, and carry(z,
x) become false. Everything else doesn’t change.

In PDDL:

(: a c t i o n drop
: pa ramete r s (? x − b a l l ? y −room ?z − g r i p p e r)
: p r e c o n d i t i o n (and (c a r r y ? z ?x) (at−robby ?y))
: e f f e c t (and (at−b a l l ? x ?y) (f r e e ? z)

(not (c a r r y ? z ?x))))

68/361

A Note on Action Effects

Action effects can be more complicated than seen so far.

They can be universally quantified:

(f o r a l l (? v1 . . . ? vn)
<e f f e c t >)

They can be conditional:

(when <cond i t i o n >
<e f f e c t >)

They can have cost.

They can have duration and time constrainst....

69/361

Further readings

Further readings

V. Lifschitz
On the semantics of STRIPS.
Reasoning about actions and plans 1-9, Morgan Kaufmann, 1987

B. Nebel
On the compatibility and expressive power of propositional
planning formalism.
Journal of Artificial Intelligence Research 12:271-315, 2000

D. McDermott
PDDL, the Planning Domain Definition Language.
Technical report. Yale Center for Computational Vision and Control,
1998

70/361

