
Part III

State Space Planning

71/361

Outline of Part III

I. Forward Search

II. Backward Search

III. STRIPS Algorithm

72/361

Introduction

What is State Space Planning ?

• The simplest classical planning algorithms.
• Search algorithms in which the search space is a subset of the state

space:
• Each node corresponds to a state of the world.
• Each arc corresponds to a state transition.
• The current plan corresponds to the current path in the seach space.

73/361

I. Forward Search

Forward Search Principle

• The forward search algorithm is nondeterministic

• The forward search algorithm is sound and complete

• The forward search algorithm takes as input the statement
P = (O, s0, g) of a planning problem P. If P is solvable, then
Forward-search(O, s0, g) returns a solution plan. Otherwise it
returns failure.

• The plan returned by each recursive invocation of the algorithm is
called a partial solution because it is part of the final solution
returned by the top level invocation.

74/361

Forward Search Algorithm

Algorithm (ForwardSearch(O, s0, g))

if s satisfies g then return an empty plan ⇡

active {a | a is a ground instance of an operator O
and precond(a) is true in s}

if active = ; then return Failure
nondeterministically choose an action a1 2 active
s1 �(s, a1)

⇡ ForwardSearch(O, s1, g)
if ⇡ 6= Failure then return a1 · ⇡

else return Failure

75/361

Forward Search Example

Take the state s defined in figure below:

c3

r1

loc2loc1

crane1

c1

c2

c1

p1

p2

• s0 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1),
holding(crane1,c3), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2),
occupied(loc2), unloaded(r1)}.

• and the goal g = { at(r1,loc1), loaded(r1,c3)}.

• If the ForwardSearch algorithm chooses the action a = move(r1,loc2,loc1) in the
first invocation and a = load(crane1, loc1,c3,r1) in the second invocation
producing the state s0. s0 satisfies g , the execution returns:

• ⇡ = hmove(r1,loc2,loc1), load(cran1,loc1,c3,r1)i

76/361

Forward Search Example

Warning
There are many other execution traces, some of which are infinite. For
instance, one of them makes the following infinite sequence of choices
for a:

• move(r1,loc2,loc1)

• move(r1,loc1,loc2)

• move(r1,loc2,loc1)

• move(r1,loc1,loc2)

• etc.

• In practice, you can use any classical graph search algorithms such
as A*, Iterative Deepening, greedy best first search, etc.

77/361

II. Backward Search

Backward Search Principle and Algorithm

The idea is to start at the goal and apply inverses of the planning
operator to produce subgoals, stopping if we produce a set of subgoals
satisfied by the initial state. The backward search algorithm is also sound
and complete.

Algorithm (BackwardSearch(O, s0, g))

if s0 satisfies g then return an empty plan ⇡

revelant {a | a is a ground instance of an operator O
that is revelant for g }

if revelant = ; then return Failure
nondeterministically choose an action a1 2 revelant
s1 ��1(s, a1)

⇡ BackwardSearch(O, s1, g)
if ⇡ 6= Failure then return a1 · ⇡

else return Failure

78/361

Backward Search Example

Recall that the initial state is the state s:

c3

r1

loc2loc1

crane1

c1

c2

c1

p1

p2

• s0 = { attached(p1, loc1), in(c1, p1), top(c1,p1), on(c1, pallet),
attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet),
belong(crane1,loc1), holding(crane1,c3), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1)}.

• and the goal g = { at(r1,loc1), loaded(r1,c3)}.

79/361

Backward Search Example: First Invocation

In the first invocation of the BackwardSearch algorithm, it chooses a =

load(crane1, loc1,c3,r1) and then assigns:

First Invocation

g ��1(g , a)

= (g � effects+(a)) [precond(a)

= ({at(r1,loc1), loaded(r1,c3)}� {empty(crane1), loaded(r1,c3)})

[{belong(crane1,loc1), holding(crane1,c3), at(r1,loc1),

unloaded(r1)}

= {at(r1,loc1), belong(crane1,loc1), holding(crane1,c3),

unloaded(r1)}

80/361

Backward Search Example: Second Invocation

In the second invocation of the BackwardSearch algorithm, it chooses
a = move(r1, loc2,loc1) and then assigns:

Second Invocation

g ��1(g , a)

= (g � effects+(a)) [precond(a)

= ({at(r1,loc1), belong(crane1,loc1), holding(crane1,c3),

at(r1,loc1), unloaded(r1)}� {at(r1,loc1), occupied(loc1)})

[{adjacent(loc2,loc1), at(r1,loc2), ¬occupied(loc1)}

= {belong(crane1,loc1), holding(crane1,c3), unloaded(r1),

adjacent(loc2,loc1), at(r1,loc2), occupied(loc1)}

81/361

Backward Search Example: Result

This time g is satisfied by s, so the execution trace terminates and
returns the plans:

• ⇡ = h(move(r1,loc2,loc1), load(crane1,loc1,c3,r1)i

Warning
Like ForwardSearch algorithm, there are many other execution traces,
some of which are infinite. For instance, one of them makes the
following infinite sequence of choices for a:

• load(crane1,loc1,c3,r1)

• unload(crane1,loc1,c3,r1)

• load(crane1,loc1,c3,r1)

• unload(crane1,loc1,c3,r1)

• etc.

82/361

III. STRIPS Algorithm

STRIPS Algorithm Principle

• The biggest problem of the previous approaches is how improve
efficiency by reducing the size of the search space.

• STRIPS is somewhat similar to the BackwardSearch but differs from
it in the following ways:

1. In each recursive call of the STRIPS algorithm, the only subgoals
eligible to be worked on are the preconditions of the last operator
added to the plan. This reduce the branching factor substantially.
However, it makes STRIPS incomplete.

2. If the current state satisfies all of on operator’s preconditions,
STRIPS commits to executing that operator and will not backtrack
over this commitment. This prune a large portion of the search space
but again make STRIPS incomplete.

83/361

STRIPS Algorithm

Algorithm (STRIPS(O, s, g))

⇡ the empty plan
while true do

if s satisfies g then return ⇡

revelant {a | a is a ground instance of an operator O

that is revelant for g }

if revelant = ; then return Failure
nondeterministically choose an action a 2 revelant
⇡0
 STRIPS(O, s, precond(a))

if ⇡0 = Failure then return Failure
;; if we get here, then ⇡0 achieves precond(a) from s

s �(s,⇡0)

;; s now satisfies precond(a)
s �(s, a)

⇡ ⇡ · ⇡0
· a

end

84/361

STRIPS Algorithm Remarks

• As an example of a case where STRIPS is incomplet, STRIPS is
unabe to find a plan for on of the first problems a computer
programmer learns:

• The problem of interchanging the values of two variables

• Even for problems that STRIPS solves, it does not always find the
best solution.

85/361

Sussman Anomaly

loc1

crane1

c2

p1 p2

c1

c3

q3q2q1

Figure 4: s0 = { in(c3,p1), top(c3,p1), in(c1,p1), on(c3,
c1), on(c1,pallet), in(c2,p2), top(c2,p2), on(c2,pallet),
top(pallet,q1), top(pallet,q2), top(pallet, q3),
empty(crane1) }

c3

c2

c1

Figure 5: g = { on(c1,c2),
on(c2,c3) }

86/361

STRIPS Result for the Sussman Anomaly

The shortest solutions that STRIPS can find are all similar to the
following:

take(c3,loc1,crane1,c1)
put(c3,loc1,crane1,q1)
take(c1,loc1,crane1,p1)
put(c1,loc1,crane1,c2) STRIPS has achieved on(c1,c2)
take(c1,loc1,crane1,c2
put(c1,loc1,crane1,p1)
take(c2,loc1,crane1,p2)
put(c2,loc1,crane1,c3) STRIPS has achieved on(c2,c3)

but needs to reachieved on(c1,c2)
take(c1,loc1,crane1,p1)
put(c1,loc1,crane1,c2) STRIPS has now achieved both goals

87/361

STRIPS result for the Sussman Anomaly

• STRIPS’s difficulty involves deleted condition interaction.

Example
The action take(c1,loc1,crane1,c2) is necessary in order to help achieve
on(c2,c3) but it deletes the previous achieved condition on(c1,c2).

• One way to find the shortest plan for Sussman anomaly is to
interleave plans for different goals.

Note
This observation such as these led to the development of a technique
called plan space planning, in which the planning system searches
thought a space whose nodes are partial plans rather that states of the
world.

88/361

To go further

Exercice

Consider the Sussman anomaly shown previouly introduced slide 86. The
shortest plan ⇡1 for achieving on(c1,c2) from the initial state is:

⇡1 = htake(c3,loc1,crane1,c1)

put(c3,loc1,crane1,q1)

take(c1,loc1,crane1,p1)

put(c1,loc1,crane1,c2)i

and the the shortest plan ⇡2 for achieving on(c2,c3) from the initial state
is:

⇡2 = htake(c2,loc1,crane1,p2)

put(c2,loc1,crane1,c3)i

How to interleave ⇡1 and ⇡2 to find the shortest plan for the Sussman
anomaly ?

89/361

Further readings

R. Fikes and N. Nilsson
STRIPS: A new approach to the application of theorem
proving to problem solving.
Artificial Intelligence 2(3-4):189-208, 1971

J. Hoffmann
FF: The fast forward planning system.
Artificial Intelligence Magazine 22(3):57-62, 2001

M. Helmert
The Fast Downward Planning System.
Journal Of Artificial Intelligence Research, Volume 26, pages
191-246, 2006

90/361

