
Part IV

Plan Space Planning

91/361

Outline of Part IV

I. Plans Space Search

II. Solution Plans in Plan-Space

III. Algorithms for Plan Space Planning

92/361

Introduction

• The search space is no more a states space but a plans space.
• Nodes are partially specified plans.
• Arcs are plan refinement operations intended to further complete a

partial plan, i.e., to achieve an open goal or to remove a possible
inconsistency.

• Solution plan definition changes. Planning is considered as two
separate operations:

1. the choice of actions
2. the ordering of the chosen actions so to achieve the goal.

93/361

I. Plans Space Search

Plan Space Example

l1

k1

c1c1

p1

k2

p2

r1

l2

l3

Figure 6: A robot r1 has to move a container c1 from pile p1 at location l1 to
pile p2 and location l2. Initially r1 is unloaded at location l3. There are empty
cranes k1 and k2 at locations l1 and l2. Pile p1 at location l1 contains only
container c1; pile p2 at location l2 is empty. All location are adjacent.

94/361

Plan Space Example

Consider we have a partial plan that contains only the two following
actions

• take(k1,c1,p1,l1): crane k1 picks up container c1 from pile 1 at
location l1

• load(k1,c1,r1,l1): crane k1 loads container c1 on robot r1 at
location l1

Let us refine it by adding a new action and let us analyse how the partial
plan should be updated. We will come up with four ingredients:

1. adding actions
2. adding ordering constraints
3. adding causal relationship
4. adding variable binding constraints

95/361

Adding Actions Example

Nothing in this partial plan guarantees that robot r1 is already at location
l1. Proposition at(r1,l1), required as a precondition by action load, is a
subgoal in this partial plan. We need to add the following action:

• move(r1,l,l1): robot r1 moves from location l to the required
location l1.

96/361

Adding Ordering Constraints

This additional move action achieves its purpose only if it is constrained
to come before the load action. But should the move action come before
or after the take action? Both are possible.

Least Commitment principle
Not add a constraint to a partial plan unless it is strictly needed. May
permit to run actions concurrently.

97/361

Adding Causal Links

In partial plan, we have added one action and an ordering constraint to
another action already in the plan. Is that enough? No quite. Because

there is no explicit notion of a current state (e.g., an ordering constraint
does not say that the robot stays at location l1 until load action is
performed). Hence, we will be encoding explicitly in the partial plan the
reason why action move was added: to satisfy the subgoal at(r1,l1)
required by action load.

This relationship between the two actions move and load with respect to
proposition at(r1,l1), is called a causal link.

Note
The former action is called the provider of the proposition, the later the
consumer. The role of a causal link is to state that a precondition is
supported by another.

98/361

Adding Variable Binding Constraints

A final item in the partial plan that goes with refinement we are
considering is that variable binding constraints.

• Operators are added in the partial plan with systematic variables
renaming.

• We should make sure that the new operator move concerns the
same robot r1 and the same location l1 as those in the operator take
and load.

• What about l the robot will be come from? At this stage there is no
reason to bind this variable to a constant. The variable l is kept
unbounded.

99/361

Partial Plan Definition

Definition (Partial Plan)
A partial plan is a tuple = (A,�,B , L) where:

• A = {a1, . . . , ak} is a set of partially instantiated planning operators.

• � is a set of ordering constraints on A of the form (ai � aj).

• B is a set of binding constraints on the variables of actions in A of
the form x = y , x 6= y , or x 2 Dx , Dx being a subset of the domain
of x .

• L is a set of causal links of the form hai
p
�! aji, such that ai and aj

are actions in A, the constraint (ai � aj) is in �, proposition p is an
effect of ai and a precondition of aj , and the binding constraints for
variables of ai and aj appearing in p are in B .

100/361

Partial Plan Example

• Let us illustrate two partial plans corresponding to

l1

k1

c1c1

p1

k2

p2

r1

l2

l3

• The goal of having container c1 in pile p2 can be expressed simply
as in(c1,p2).

• The initial state is:
• { adjacent(l1,l2), adjacent(l1,l3), adjacent(l2,l3), adjacent(l2,l3),

adjacent(l3,l1), adjacent(l3,l2), attached(p1,l1), attached(p2,l2),
belong(k1,l1), belong(k2,l2), empty((k1), empty(k2), at(r1,l3),
unloaded(r1), occupied(l3), in(c1,p1), on(c1,pallet), top(c1,p1),
top(pallet,p2) }

101/361

Partial Plan Example

A graphical representation of the initial plan ⇡0 is shown in figure 102.
Each box is an action preconditions above and effects below the box.
Solid arrows are ordering constraints; dashed arrows are causal links; and
binding constraint are implicit or shown directly in the arguments.

a0 an

empty(k1), empty(k2)

at(r1,l3), unloaded(r1)

occupied(l3)

in(c1,p1), on(c1,pallet)

top(c1,p1), top(pallet,p2)

in(c1,p2)

Figure 7: Initial plan ⇡0.

102/361

Partial Plan Example

103/361

a0

in(c1,p1)
at(r1,l3)
empty(k1)
empty(k2)
unloaded(r1)
occupied(l3)
on(c1,pallet)
top(c1,p1)
top(pallet,p2)

an

in(c1,p2)

take(k1,c1,p1,l1)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

Partial Plan Example

103/361

a0

in(c1,p1)
at(r1,l3)
empty(k1)
empty(k2)
unloaded(r1)
occupied(l3)
on(c1,pallet)
top(c1,p1)
top(pallet,p2)

take(k1,c1,p1,l1)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

loaded(r1,c1)
empty(k1)

at(r1,l1)
holding(k1,c1)
unloaded(r1)

an

in(c1,p2)

load(k1,c1,r1,l1)

Partial Plan Example

103/361

in(c1,p1)
at(r1,l3)
empty(k1)
empty(k2)
unloaded(r1)
occupied(l3)
on(c1,pallet)
top(c1,p1)
top(pallet,p2)

adjacent(l,l1)
at(r1,l)
not(occupied(l1))

at(r1,l1)
not(at(r1,l))
not(occupied(l1))
occupied(l)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

loaded(r1,c1)
empty(k1)

at(r1,l1)
holding(k1,c1)
unloaded(r1)

in(c1,p2)

a0 an

load(k1,c1,r1,l1)

move(r1,l,l1)

take(k1,c1,p1,l1)

To summurize

• A partial plan is a structured collection of actions that provides the
causal relationships for its actions, as well intrinsic ordering and
variable bindings

• A partial plan provides subgoals as preconditions without causal links

• A plan-space planner refines a partial plan by adding actions,
ordering contraints, binding constraints or causal links

• It is convenient to see a partial plan as set of plans

104/361

II. Solution Plans in Plan-Space

Solution Plan Definition

To define planning algorithm we have to define formally what is a
solution plan in plan-space.

Definition (Solution Plan)
A partial plan ⇡ = (A,�,B, L) is a solution plan for a problem P = (⌃, s0, g) if:

• its ordering constraints � and binding constraints B are consistent.

• every sequence of totally ordered and totally instantiated actions of A satisfying
�.

• B is a sequence that defines a path in the state transition system ⌃ from the
initial state s0 corresponding to effects of the action a0 to state containing all
goal proposition in g given by preconditions of an.

Problem

• this definition does not provide a computable test for verifying plans

• It is not feasible to check all instantiated sequences of actions of A.

105/361

Example: Plan with incorrect sequence

a0

in(c1,p1)
at(r1,l3)

an

in(c1,p2)

move(r1,l,l1)

adjacent(l,l1)
at(r1,l)
not(occupied(l1))

at(r1,l1)
not(at(r1,l))
not(occupied(l1))
occupied(l)

take(k1,c1,p1,l1)

holding(k1,c1)
not(in(c1,p1))

in(c1,p1)
empty(k1)

loaded(r1,c1)
empty(k1)

at(r1,l1)
holding(k1,c1)
unloaded(r1)

load(k1,c1,r1,l1)

move(r1,l',l'')

at(r1,l1) is not satisfied in the state preceding load due to action
move(r ,l 0,l 00) in the case where l

0 = l1 for instance

106/361

Flaw and Threat

To propose a computable definition we need to introduce two notions:

Definition (Threat)

An action ak in a plan ⇡ is a threat on a causal link (ai
p
�! aj) iff:

• ak has an effect ¬q that is possible inconsistent with p.

• the ordering constraints (ai � ak) and (ak � aj = are consistent
with B .

• the binding constraints from the unification of q and p are
consistent with B .

Definition (Flaw)
A flaw in a plan ⇡ = (A,�,B , L) is either:

• a subgoal, i.e., a precondition of an action in A with out a causal link

• a threat, i.e., an action that may interfere with causal link.

107/361

Solution Plan Proposition

Proposition (Solution Plan)
A partial plan ⇡ = (A,�,B , L) is a solution plan for a problem
P = (⌃, s0, g) if:

• ⇡ has no flow and

• the set of ordering contraints � is consistent and

• the set of binding constraints B is consistent.

• This proposition can be prove by induction on the number of actions
in A.

108/361

Example: Solution Plan

a0 an

move(r1,l3,l1)

take(k1,c1,p1,l1)

load(k1,c1,r1,l1) move(r1,l3,l1) unload(k1,c1,r1,l1) put(k1,c1,p2,l2)

Figure 8: A solution plan

109/361

III. Algorithms for Plan Space
Planning

PSP procedure

110/361

• PSP procedure is a generic and simple
planning alpgorithm to plan in plan-space

• A plan ⇡ is a solution when it has no flaw,
the main principle is to refine ⇡, while
maintaining � and B consistent, until it
has no flaw. The basic operations for
refining a partial plan ⇡ toward a solution
plan are the following:

• Find the flaws of ⇡, i.e., its subgoals and
its threats.

• Select on such flaw.
• Find ways to resolve it.
• Choose a resolver for the flaw.
• Refine ⇡ according to that resolver.

Resolve

Select a flaw

ad
d

a
ne

w
 p

ar
tia

l p
la

n

Select a resolver
Failure

Solution plan
no flaw

no resolver

Threats

Plan Space

Ordering

constraint

manager

Binding

constraint

manager

Open goals

Refine

initial plan

PSP Algorithm

Algorithm (PSP(⇡))

flaws OpenGoals(⇡) [Threat(⇡)
if flaws = ; then return ⇡

select any flaw sigma 2 flaws
resolvers Resolve(�,⇡)
if resolvers = ; then return Failure

nondeterministically choose a resolver ⇢ 2 resolvers
⇡0
 Refine(⇢, ⇡)

return PSP(⇡0)

111/361

Attached Procedures

OpenGoals(⇡). This procedure find all subgoals in ⇡.

Threat(⇡). This procedure find every action ak that is a threat on
some causal link (ai

p
�! aj).

Resolve(�, ⇡). This procedure finds all ways to solve a flaw �.

Refine(⇢, ⇡). This procedure refines the partial plan ⇡ with le elements
in the resolver, adding to ⇡ on ordering constraint, on or
several binding constraints, a causal link, and/or a new
action.

112/361

Important remarks

• Even with the restrictive assumption of finit transition system the
plan space is not finite

• A deterministic implementation of the PSP procedure will maintain
the completness only if it garantees to explore all partial plans, up to
a some length

• It is necessary to use search strategy such as IDA* or A*.

113/361

PoP Algorithm

Algorithm (PoP(⇡, agenda))

if agenda = ; then return ⇡

select any pair (aj , p) in and remove it from agenda
relevant Providers(p,⇡)
if relevant = ; then return failure
nondeterministically choose an action ai 2 relevant

L L [{hai
p
�! aj i}

update B with the bindig constraints of this causal link
if ai is a new action in A then

update A with ai

update � with (ai � aj), (a0 � ai � a1)

update agenda with all preconditions of ai

foreach threat on hai
p
�! aj i or due to ai do

resolvers set of resolvers for this threat
if resolvers = ; then return failure
nondeterministically choose a resolvers
add that resolver to � or to B

return PoP(⇡, agenda)

114/361

PoP Algorithm

• PoP algorithm is a simplified version of a planner called UCPOP.
• The main difference between PSP and PoP is that PSP processes

the two types of flaws in a similar way
• at each recusion, it selects heuristically a flaw from any type to

pursue the refinement

• PoP has a distinct control for subgoals and for threart.

115/361

Plan-Sapce vs. State-Space
Planning

Plan-Sapce vs. State-Space Planning

• The state space is finite, while the plan space is not

• Intermediate states are explicit in state space, while there is no
explicit state in plan space

• A partial plan separates the choice of the actions that need to be
done from how to organize them into a plan, e.g, just keep the
ordering constraints over the chosen actions

• The plan structure an the rationale for plan’s component are explicit
in plan space (causal link)

• Structure use in plan space are more complex and refinements take
significantly more time to compute

116/361

Avantages of Plan-Space Planners

• They build partially ordered and partially instantiated plans that are
more explicite and flexible for execution than plans created by state
space planners

• They provide an open planning approach for handling severals
extensions to classical planning, such as time, resources, etc.

• They allow distributed planning and multi-agent planning t be
adressed to due plan structure and no explicite state representation.

117/361

To go further

Exercice

1. Trace the PSP procedure step-by-step on the Sussman anomaly
introduce in chapter Plan Space Planning.

2. Draw the complete graph to compute the solution plan show in the
slide “Example of Solution Plan”:

• How many threats are there ?
• How many plans can be found ?

118/361

Further readings

E. Sacerdoti
Planning in a hierarchy of abstraction spaces.
Artificial Intelligence 5:115-135, 1974

J. Penberthy and D.S. Weld
UCPOP: A sound, complete, partial order planner for ADL.
In Proceedings of the International Conference on Knowledge
Representation and Reasoning 103-114, 1992

119/361

