
Part V

Planning-Graph Techniques

120/361

Outline of Part V

I. Planning Graphs

II. The Graphplan Planner

III. Extensions and Improvements of Graphplan

121/361

Introduction

• Planning-Graph techniques rely on classical planning representation

• These techniques introduce a new search space called
Planning-Graph

• Planning-Graph techniques provide plan as a sequence of sets of
actions

• Plan-space produces plan as a partially ordered set of actions
• State-space produce plan as a sequence of actions
• =) Planning-Graph is less expressive that Plan-space but more than

State-space

• Planning-Graph approach rely on two interrelated ideas:
1. Reachability analysis: addresses the issue of wether a state is

reachable from some given state
2. Disjunctive refinement: consists of addressing one or several flaws

through a disjunctive resolvers

122/361

I. Planning Graphs

Reachability Trees

• The planning-graph structure provides a efficient way to estimate
which set of propositions is possible reachable from a state s0 with
which actions

Definition (Reachability)
Given a set A of actions, a state s is reachable from some initial state
s0, if there is a sequence of actions in A that defines a path form s0 to s.

• Reachability analysis consists in analysing which states can be
reached from s0 in some number of steps and how to reach them

• can be used to defined heuristics in state-space planning

• Reachability can be computed exactly through a reachability tree
that gives �̂(s0), or it can be approximated though planning graph
developped

123/361

Example: Reachability Trees

• Consider a simpled DWR domain with no piles and no cranes where
robots can load and unload autonomously containers where locations
locations can contain an unlimited number of robots

loc2loc1

robr

conta

robq

contb

124/361

Example: Reachability Trees

move(r , l , l 0) ;; robot r at l moves at a connected location l
0

precond: at(r , l), adjacent(l , l 0)
effects: at(r ,l 0), ¬at(r , l)

load(c , r , l) ;; robot r at location l loads container c
precond: at(r , l), in(c,l), unloaded(r)
effects: loaded(r ,c), ¬in(c, l), ¬unloaded(r)

unload(c , r , l) ;; robot r at location l unloads container c
precond: at(r , l), loaded(r , c)
effects: unloaded(r), in(c,l), ¬loaded(r , c)

• Here the set of actions A has 20 actions corresponding to the
operators move, load and unload

125/361

Example: Reachability Trees

• To simplify representation, let us denote atoms by propositional
symbols:

• r1 and r2 stand for at(robr,loc1) and at(robr,loc2)
• q1 and q2 stand for at(robq,loc1) and at(robq,loc2)
• a1, a2, ar and aq stand for in(conta,loc1), in(conta,loc2),

loaded(conta,robr) and loaded(conta,robq)
• b1, b2, br and bq stand for in(contb,loc1), in(contb,loc2),

loaded(contb,robr) and loaded(contb,robq)

• Let us also denote the 20 actions in A:
• Mr12 is the action move(robr,loc1,loc2), Mr21 is the opposite, and

Mq12 and Mq21 are the similar move action for robot robq
• Lar1 is the action load(conta,robr,loc1) Lar2, Laq1 and Laq2 are the

other load actions for conta in loc2 with contb. Lbr1, Lbr2, Lbq1
and Lbq2 are the load actions for contb

• Uar1, Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, and Ubq2 are the
unload actions

126/361

Example: Reachability Trees

r2

q2

a1

b2

ur

uq

r1

q2

ar

b2

uq

r1

q2

a1

bq

ur

r1

q2

a1

b2

ur

uq

r2

q1

a1

b2

ur

uq

r2

q2

a1

br

ur

r2

q2

a1

bq

uq

r2

q2

a1

bq

ur

r1

q1

a1

bq

ur

r1

q2

ar

bq

r1

q2

a1

b2

ur

uq

r1

q2

a1

b2

ur

uq

r1

q1

a1

b2

ur

uq

Mr12 Mq21 Lar1 Lbq2

Mr12 Mq21 Lbr2 Lbq2 Mr12 Mq21 Lar1 Ubq2

127/361

Reachability Trees

• A reachability tree is a tree T whose
• Nodes are states of ⌃
• Edges corresponds to action of ⌃

• The root node of T is the state s0

• The children of a node s are all the state in �(s)

• A complete reachability tree from s0 give �̂(s0)

• A reachability tree developed down to depth d solves all planning
problems with s0 and A, for every goal that is reachable in d of
fewer actions:

• a goal is reachable from s0 in at most d steps iff it appears in some
node of the tree

• The size of T blows up in O(kd), where k is the number of valid
action per state

• Some nodes of T can be reached by different paths
=) reachability tree can be factorized into a graph

128/361

Example: Reachability graph

r2

q2

a1

b2

ur

uq

r1

q2

ar

b2

uq

r1

q2

a1

bq

ur

r2

q2

a1

br

uq

r2

q2

a1

bq

ur

r2

q1

a1

b2

ur

uq

r1

q1

aq

b2

ur

r1

q1

ar

b2

uq

r2

q2

ar

b2

uq

r1

q2

ar

bq

r1

q1

ar

bq

ur

r1

q2

a1

b2

ur

uq

r1

q1

a1

b2

ur

uq

Mr12 Mq21 Lar1 Lbq2

Mr12

Mq21Lbr2 Lbq2

Mr12Mq21

Lar1Ubq2

Mr21

Mr12 Laq1

Lar1 Mq21

Ubq2

129/361

Reachability with Planning Graphs

• A major contribution of Graphplan planner is a relaxation of the
reachability analysis

• The approach provides an incomplete condition of reachability
through a planning graph

• A goal is reachable from s0 only if it appears in some node of the
planning graph : this is not a sufficient condition anymore

• This weak reachability condition is compensated for a low complexity
• The planning graph is of polynomial size and can be build in

polynomial time in the size of the input

130/361

Reachability with Planning Graphs

Basic Idea
The basic idea in a planning graph is to consider at every level of this
structure not individual states but, to a first approximation, the union
of sets of propositions in serveral states

131/361

Reachability with Planning Graphs

Reachability tree Planning Graph
• Actions branching out form a
node are mutually exclusive

• Actions are consideres as inclu-
sive disjunction from a node to the
next that contains all the effects of
the actions

• A node is associated with the
proposition that necessarily hold
for that node

• A node contains proposition that
possibly hold at some point

• State is a consistent set of propo-
sitions

• The union of the sets of propo-
sitions for several states does not
preserve consistency =) solution
is to keep track incompatible ac-
tions and propositions

132/361

Reachability with Planning Graphs

• A planning graph is a directed layered graph:
• arcs are permitted only from one layer to the next

• Nodes in level 0 correspond to the set P0 of propositions denoting
the initial state s0 of the planning problem

• Level 1 contains two layers:
1. an action level A1 that is the set of actions (ground instance of

operators) whose preconditions are nodes in P0

2. a proposition level P1 that is defined as the union of P0 and the sets
of positive effects of action in A1

• An action node in A1 is connected with :
• a incoming precondition arcs from its preconditions in P0

• a outgoing arcs to its positive effects and to its negative effects in P1

• Outgoing arcs are labeled positive or negative
• Note that negative effects are not deleted from P1, thus P0 ✓ P1

• This process is pursued from one level to the next

133/361

Reachability with Planning Graphs

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

negative effects

preconditions and positive effects

134/361

Reachability with Planning Graphs

• In accordance with the idea of inclusive disjunction in Ai and the
union of proposition in Pi , a plan associated to a planning graph is
no longer a sequence of actions corresponding directly to a path in
⌃

• A plan ⇧ is sequence of set of actions

⇧ = h⇡1,⇡2, . . . ,⇡ki

• A plan is qualified as layered plan since it is is organized into levels
corresponding to those of the planning graph with ⇡i ✓ Ai

• The first level ⇡1 is a subset of indepedent action in A1 that can be
apply in any order to the initial state and can lead to a state that is
a subset of P1 and so forth until level k whose actions lead to a
state meeting the goal

135/361

Independent Actions

Definition (Independent Actions)
Two actions (a, b) are independent iff:

• effects�(a) \ [precond(b) [effect+(b)] = ; and

• effects�(b) \ [precond(a) [effect+(a)] = ; and

A set of actions ⇡ is independent when every pair of ⇡ is independent

• Conversely, two actions a and b are dependent if:
• a deletes a precondition of b or

• the ordering a � b will not be permitted
• a deletes a positive effect of b or

• the resulting state will depend on their order
• symetrically for negative effects of b with respect to a

• b deletes a precondition on a positive effect of a

136/361

Independent Actions

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Mr12 (i.e., move(robr,loc1,loc2))

and Mqr21 in A1 are independ :

they can appear at the beginning of

a plan in any order

137/361

Independent Actions

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Mr12 (i.e., move(robr,loc1,loc2))

and Lar1 are not indepent in A1: a

plan starting with Mr12 will be in a

state where robr is in loc2, hence

Lar 1 is not applicable.

138/361

Independent Actions

1. The independence of action is not specific to a particular planning
problem

2. It is intrinsic property of the actions of a domain that can be
computed beforehand for all problems of that domain

139/361

Independent Actions

Definition (Actions Applicable)
A set ⇡ of independent actions is applicable to a state s iff
precond(⇡) ✓ s. The result of applying the set ⇡ to s is defined as:

�(s,⇡) = (s � effects�(⇡)) [effects+(⇡)

where

• precond(⇡) =
S

{precond(a) | 8a 2 ⇡},

• effects+(⇡) =
S

{effects+(a) | 8a 2 ⇡}, and

• effects�(⇡) =
S

{effects�(a) | 8a 2 ⇡}.

140/361

Independent Actions

Proposition (Applicable Actions’ Set)
If a set ⇡ of independent actions is applicable to s then, for any
permutation ha1, . . . , aki of the elements of ⇡, the sequence
ha1, . . . , aki is applicable to s, and the state resulting from the
application of ⇡ to s is such that

�(s,⇡) = �(. . . �(�(s, a1), a2), . . . ak)

Note
This proposition allow to go back to the standard semantics of a plan in
a state-transition system from the initial state to goal

141/361

Layered Plan

Definition (Layered Plan)
A layered plan is a sequence of set of actions. The layered plan
⇧ = h⇡1, . . . ,⇡ni is a solution to a problem (O, s0, g) iff :

• each set ⇡ 2 ⇧ is applicable to �(s0,⇡1, . . .) and

• g ✓ �(. . . �(�(s,⇡1),⇡2), . . .⇡n).

Proposition (Layered Plan Concurrency)
If ⇧ = h⇡1, . . . ,⇡ni is a solution plan to a problem (O, s0, g), then a
sequence of actions coresponding to any permutation of the elements of
⇡1, followed by any permutation of ⇡2, . . ., follow by any permutation
of ⇡n is a path from s0 to a goal state.

• This proposition follows directly the actions concurrency proposition.

142/361

Mutual Exclusion Relations

• The union of the sets of propositions for several states does not
preserve consistency

• Some actions in a action layer are not independent

• How to capture incompatibility between actions and propositions ?

Solution
The solution is to keep track incompatible actions and propositions also
called mutual exclusion relations based on action independent criteria

143/361

Mutual Exclusion Relations

1. Two dependent actions in an action layer cannot appear
simultaneously, hence the positive effects of two dependent actions
are incompatible unless these propositions are also positive effects of
some other independent actions

• Two propositions are incompatible in the sens where they cannot be
reached through a single level

2. Negative and positive effects of an action are also incompatible
propositions

• to deal with this second type of incompatibility, it is convenient to
introduce for each proposition p a dummy action called no-op, noted
↵p, whose precondition and sole effect is p

• if an action a has p as a negative effect, then according to our
definition, a and ↵p are independent actions (positive effects
incompatible)

144/361

Mutual Exclusion Relations

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Mr12 (i.e., move(robr,loc1,loc2))

and Lar1 are not indepent in A1,

hence r2 and ar are mutex.

145/361

Mutual Exclusion Relations

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Negative and positive effect of an

action are incompatible

146/361

Mutual Exclusion Relations

• Dependency between actions in an action level Ai of the planning
graph leads to incompatible proposition in a level Pi

• Conversely, incompatible propositions in a level pi lead to
additionnal incompatible actions in the following level Ai+1

• These are actions whose preconditions are incompatible

147/361

Mutual Exclusion Relations

r1

q2

a1

b2

ur

uq

r1

r2

q2

a1

q1

b2

ar

ur

uq

bq

r1

r2

q2

a1

q1

ar

b2

br

aq

ur

uq

bq

r1

r2

q2

a1

q1

ar

b1

br

aq

ur

uq

bq

a2

b2

Mr12

Mq21

Lar1

Lbq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uar2

Uaq1

Ubq1

P0 P1 P2 P3A1 A2 A3

Additionnal action incompatibility

and mutex propagation

148/361

Mutual Exclusion Relations

Definition (Mutual Exclusion Relation)
• Two actions a and b in level Ai are mutex if :

1. a and b are dependent or
2. a precondition of a is mutex with a precondition of b

• Two propositions p and q in Pi are mutex if:

1. every action in Ai that has p as positive effect (including no-op
actions) is mutex with every action that produces q and

2. there is no action in Ai that produces both p and q

Note
• Dependent actions are necessarily mutex

• Dependency is an intrinsic property of the actions in a domain, while the mutex
relation takes into account additionnal constraints of the problem

• For a same problem, a paire of actions may be mutex in some action level Ai

and become non-mutex in some latter level Aj of a planning graph

149/361

Mutual Exclusion Relations

Level Mutex elements

A1 {Mr12}⇥ {Lar1}
{Mq21}⇥ {Lbq2}

P1 {r2}⇥ {r1, ar}

{q1}⇥ {q2, br}

{ar}⇥ {a1, ur}

{bq}⇥ {b2, uq}

A2 {Mr12}⇥ {Mr21, Lar1,Uar1}
{Mr21}⇥ {Lbr2, Lar1⇤,Uar1⇤}
{Mq12}⇥ {Mq21, Laq1, Lbq2⇤,Ubq2⇤}
{Mq21}⇥ {Lbq2,Ubq2}
{Lar1}⇥ {Uar1, laq1, Lbr2}
{Lbr2}⇥ {Ubq2, Lbq2,Uar1,Mr12⇤}
{Laq1}⇥ {Uar1,Ubq2, Lbq2,Mq21⇤}
{Lbq2}⇥ {Ubq2}

P2 {br}⇥ {r1, b2, ur , bq , ar}

.

150/361

Mutual Exclusion Relations

• We note the set of mutex pairs in Ai as µAi and the set of mutex
pairs in Pi as µPi

• Let us remark that:
1. dependency between actions as well as mutex between actions or

propositions are symmetrically relations
2. for 8i : Pi�1 ✓ Pi and Ai�1 ✓ Ai

151/361

Mutual Exclusion Relations

Proposition (Monotonicity)
If two propropositions p and q are in Pi�1 and (p, q) 62 µPi�1, then
(p, q) 62 µPi and if two actions a and b are in Ai�1 and (a, b) 62 µAi�1,
then (a, b) 62 µAi .

Proof
Every proposition p in a level Pi is supported by at least its no-op
action ↵p. Two no-op actions are necessarily independent. If p and q in
Pi�1 are such that (p, q) 62 µPi�1, then (↵p,↵q) 62 µAi . Hence, a
non-mutex pair of propositions remains non-montex in the following
level. Similarly, if (a, b) 62 µAi�1, then a and b are independent and
their preconditions in Pi�1 are not mutex; both properties remain valid
at the following level.

152/361

Mutual Exclusion Relations

• According to this result,
• propositions and actions in a planning graph monotonically increase

from one level to the next
• mutex pairs monotonically decrease

• These monotonicity properties are essential to the complexity and
the terminaison of the planning graph techniques

Proposition (Weak Reachability)
A set g of propositions is reachable from s0 only if:

• there is in the corresponding planning graph a proposition layer Pi

such that g 2 Pi and

• no pair of propositions in q are in µPi

153/361

II. The Graphplan Planner

The Graphplan Planner

• The Graphplan algorithm performs a procedure close to interative
deepening, discovering a new part of the search space at each
iteration. It iteratively:

1. expands the planning graph by one level and
2. searches backward form the last level of this graph for a solution

• The fisrt extraction, proceeds to level Pi in which all of the goal
propositions are included and no paires of them are mutex

• it does not make sens to start searching a graph that does not meet
the necessary condition of the weak reachability

• The iterative loop of graph expansion and search is pursued until
either a plan is found or a failure terminaison condition is met

154/361

Expanding the Planning Graph

• Let (O, s0, g) be a planning problem in the classical representation
such that s0 and g are set of propositions, and operators in O have
no negated literals in their preconditions

• Let A be the union of all ground instances of operators in O and of
all no-op actions ↵p for every proposition p of that problem

• the no-op action for p is defined as
• precond(↵p) = effects+(↵p), and
• effects�(↵p) = ;

• A planning graph for a planning problem expanded up to level i is a
sequence of layers of nodes and of mutex pairs:

G = hP0,A1, µA1,P1, µP1, . . . ,Ai , µAi ,Pi , µPi i

155/361

Expanding the Planning Graph

• The planning graph does not depend on g

• it can be used for different planning problem that have the same set
of planning operators O and initial state s0

• The expansion of G starts initially from P0 ! s0

• The expansion procedure correspond to generate the set Ai , Pi , µAi

and µPi , respectively from the elements in the previous level i � 1

156/361

Expanding the Planning Graph

Algorithm (Expand(hP0,A1, µA1, . . . ,Ai�1, µAi�1,Pi�1, µPi�1i))

Ai {a 2 A | precond(a) 2 Pi�1 and precond(a) \µPi�1 = ;}

Pi {p | 9a 2 Ai : p 2 effects+(a)}
µAi {(a, b) 2 Ai , a 6= b | a, b are dependent

or 9(p, q) 2 µPi�1 : p 2 precond(a) and q 2 precond(b) }
µPi {(p, q) 2 Pi , p 6= q | 8a, b 2 Ai , a 6= b :

p 2 effects+(a) and q 2 effects+(b)) (a, b) 2 µAi}

foreach a 2 Ai do
link a with a precondition arcs to precond(a) in Pi�1

link a with a positive arcs to effects+(a) in Pi

link a with a negative arcs to effects�(a) in Pi

end
return hP0,A1, µA1, . . . ,Pi�1, µPi�1,Ai , µAi ,Pi , µPi i

157/361

Expanding the Planning Graph

Proposition
The size of a planning graph down to level k and the time required to expand it to
that level are polynomial in the size of the planning problem.

Proof
If the planning problem (O, s0, g) has a total of n propositions and m actions, then
8i : |Pi |  n, and |Ai |  m + n (including no-op actions), µAi  (m + n)2, and
|µPi |  n2. The steps involved in the generation of these set are of polynomial
complexity in the size of the sets.

Furthermore, n and m are polynomial in the size of the problem (O, s0, g). This is
the case because, according to classical planning assumptions, operators cannot
create new constant symbols. Hence, if c is the number of constant symbols given
in the problem, e = maxo2O{|effects+(o)}, and ↵ is an upper bound on the number
of parameters of any operators, then m  |O|⇥ c↵, and n  |s0|+ e ⇥ |O|⇥ c↵.

158/361

Expanding the Planning Graph

• The number of distinct levels in a planning graph is bounded

• At some stage, the graph reached a fixed-point

Definition (Fixed-point Level)
A fixed-point level in a planning graph G is a level  such that for
8i , i > , level i of G is identical to level , i.e., Pi = P, µPi = µP,
Ai = A and µAi = µA.

Proposition
Every planning graph G has a fixed-poiny level , which is the smallest
k such that |Pk�1| = |Pk | and |µPk�1| = |µPk |.

Proof
To do . . .

159/361

Searching the Planning Graph

• The search for a solution plan in a planning graph proceeds back
from a level Pi that includes all goal proposition, no pair of which is
mutex, i.e., g 2 Pi and g \ µPi = ;.

• The search procedure looks for a set ⇡ 2 Ai of non-mutex actions
that achieve these propositions.

• Preconditions of elements of ⇡ becomes the new goal for levem i � 1
and so on

• A failure to meet the goal of some level j leads to a backward over
other subsets of Aj+1

• If level 0 is successfully reached, then the corresponding sequence
h⇡1, . . . ,⇡i i is a solution plan

160/361

Searching the Planning Graph

r1

r2

a1

q1

b2

ur

uq

r1

q2

a1

b2

br

aq

ur

uq

r1

r2

q2

a1

q1

ar

br

aq

ur

uq

bq

b2

Mr12

Mq21

Mq12

Laq1

Uar1

Ubq2

Mr12

Mq21

Lar1

Lbq2

Mr21

Mq12

Lbr2

Laq1

Ubq2

Ubr2

Uar1

Uaq1

P0 P1 P2 P3A1 A2 A3

α

α

Lbr2

Lar1

Lbq2

Mr21
α

α

α

α

r1

q2

a1

b2

ur

uq

q2

ar

bq

r2

q1

ar

bq

b1

a2

Lar1

Lbq2

Mr12

Uar2

Ubq1

Mq21

Goal = {a2,b1}

161/361

Searching the Planning Graph

• The extraction of a plan from a planning graph corresponds to a
search in an AND/OR subgraph of the planning graph:

• From a proposition in goal g , OR-branches are arcs from all actions
in the preceding action level that support this proposition, i.e.,
positive arcs to that proposition

• From an action node, AND-branches are its preconditions arcs

162/361

Searching the Planning Graph

• The mutex relation between propositions provides only forbidden
pairs, not tuples

• The search may show that a tuple or more that two propositions
corresponding to an intermediate subgoal fails

• Because of the backtracking and iterative deepening, the search may
have to analyse that same tuple more than once

• Recording tuples that failed may save time in future searched
• This recording is performed into a no-good hash-table denoted r
• This hash-table is indexed by the level of the fail goal because goal g

may fail at level i and succeed at j > i

163/361

Searching the Planning Graph

• The extract procedure takes as input:
• a planning graph G

• a current set of goal propositions g and
• a level i

• The procedure extracts a set of actions ⇡ ✓ Ai that achieves
propositions of g by recursively a other procedure that try to
establish g at level i

• If the procedure succeeds in reaching level 0, then it returns an
empty sequence, from which pending recursions successfully return a
solution plan

• It records failes tuples into r table, and it check each current goal
with respect to recorded tuples

• Note: a tuple g is added to the no-good table at level i only if the
call to establish g at level i fails

164/361

Searching the Planning Graph

Algorithm (Extract(G , g , i))

if i = 0 then return hi

if g 2 r(i) then return failure

⇡ GP-Search(G , g , ;, i)
if ⇡ 6= failure then return ⇡

r(i) r(i) [{g}

return failure

165/361

Searching the Planning Graph

• The GP-Search procedure selects each goal proposition p at a time,
in some heuristic order

• Then, it nondeterministically chooses among the the resolvers of p
one action a that tentatively extends the current subset ⇡

• The resolvers are actions that achieve p and that are not mutex with
action already selected at that level

• Then it recursively calls the same procedure
• The recursive call is done on a subset of goals minus p and minus all

positive effect of a in g

• A failure for this non-deterministic choice is a backtracking further
up if all resolvers of p have been tried

• When g is empty, then ⇡ is complete and the search recursively tries
to extract a solution for the folowing level i � 1

166/361

Searching the Planning Graph

Algorithm (GP-Search(G , g ,⇡, i))

if g = ; then
⇧ Extract(G ,

S
{precond(a) | 8a 2 ⇡}, i � 1)

if ⇧ = failure then return failure;
return ⇧.h⇡i

else
select any p 2 g

resolvers {a 2 Ai | p 2 effects+(a) and 8b 2 ⇡ : (a, b) 62 µAi}

if resolvers = ; then return failure
nondeterministically choose a 2 resolvers
return GP-Search(G , g� effects+(a),⇡ [{a}, i)

end

167/361

Searching the Planning Graph

• Graphplan performs an initial graph expansion until
1. it reaches a level containing all goal propositions without mutex or
2. it arrives at a fixed-point level in G

• If condition 2 happens first, then the goal is not achievable

• Otherwise, a search for a solution is performed and if no solution is
found at this stage, the algorithm iteratively expands and then
searches the graph G

• This iteractive deepening is pursued even after a fixed-point level
has been reached until

1. success or
2. the terminaison condition is satisfied

• This terminaison condition requires that the number of no-goods
tuples in r() at the fixed-point level , stabilizes after two
successive failures

168/361

Searching the Planning Graph

Algorithm (Graphplan(A, s0, g))

i 0, r ;, P0 s0, G hP0i

repeat

i i + 1, G Expand(G , g , i)
until [g ✓ Pi or g \ µPi = ;] or Fixedpoint(G)
if g 6✓ Pi or g \ Pi 6= ; then return failure

⇧ Extract(G , g , i)
if Fixedpoint(G) then ⌘ |r()|

else ⌘ 0
while ⇧ = failure do

i i + 1, G Expand(G , g , i), ⇧ Extract(G , g , i)
if ⇧ = failure and Fixedpoint(G) then

if ⌘ = |r()| then return failure

end

⌘ |r()|
end

return ⇧

169/361

Analysis of Graphplan

• We must analyse how the no-goods table evolves along successive
deepening stages of G

• Let rj(i) be the set of no-good tuples found at level i after the
successful completion of a deepening state down to a level j > i

• The failure of stage j means that
• any plan j or fewer steps must make at least one of the goal tuples in

rj(i) true at level i and
• none of these tuples is achievable in i levels

Proposition
8i , j such that j > i ,rj(i) ✓ rj+1(i)

170/361

Analysis of Graphplan

Proof
A tuple of goal proposition g is added as a no-good in rj(i) only when
Graphplan has performed an exhaustive search for all ways to achieve g

with the actions in Ai and tit fails : each set of actions in Ai that
provides g is either mutex or involves a tuple of preconditions g

0 that
was shown to be a no-good at the previous level rk(i � 1), for
i < k  j . In other words, only the levels from 0 to i in G are
responsible for the failure of the tuple g at level i . By iterative
deepening, the algorithm may find that g is solvable at some level
i
0 > i , but regardless of how many iterative deepening stages are

performed, once g is in rj(i), it remains in rj+1(i) and in the no-good
table at level i in all subsequent deepening stages.

171/361

Analysis of Graphplan

Proposition
The Graphplan algorithm is sound and complete, and it terminates. It
returns failure iff the planning problem (O, s0, g) has no solution;
otherwise, it returns a sequence of sets of actions ⇧ that is a solution
plan to the problem.

Proof
To do . . . (use previous proposition)

172/361

Analysis of Graphplan

1. The mutex relation on incompatible pairs of actions and
propositions, and weak reachability condition, offer a very good
insight about the interaction between the goals of a problem and
about which goals are possibly achievable at some level

2. Because of the monotonic properties of the planning graph, the
algorithm is guaranteed to terminate

3. The fixe-point feature together with reachability condition provide
an efficient failure terminaison condition

• In particular, when the goal propositions without mutex are not
reachable, no search at all is performed

173/361

Analysis of Graphplan

• Because of its backward constraint-directed search, Graphplan
bought a significant speed-up and contributed to the scalability of
planning

• Evidently, Graphplan does not change the intrinsic complexity of
planning, which is pspace-complete in the set-theorie representation

• Since the expansion of the planning graph is in polynomial time, this
means that the costly part of the algorithm is in the search of the
planning graph

• The memory requirement of the planning graph data structure can
be a significant limiting factor

• Severals techniques and heuristics have been devised to speed-up the
search and to improve the memory management of its data structure

174/361

III. Extensions and
Improvements of Graphplan

Extending the Language

• Handling negation in the preconditions of operators and in goals is
easily performed by introducing a new predicate not-op to replace
the negation of a predicate p in precondition or goal

• This replacement requires
1. adding not-p in effects� when p is in effects+ of an opperator o and
2. adding not-p in effects+ when p is in effects� of o

• One also has to extend s0 with respect to newly introduced not-p
predicate in order to maintain a consistent and closed initial world

• That is, any proposition that is not explicitly stated is false

175/361

Extanding the Language

The DWR domain has the following operator:

move(r , l , m) ;; robot r at location l moves at a connected location m

precond: at(r , l), adjacent(l , m), ¬occupied(m)
effects: at(r ,m), occupied(m), ¬occupied(l), ¬at(r , l)

The negation in the precondition is handled by introducing the predicate not-occupied
in the following way:

move(r , l , m) ;; robot r at location l moves at a connected location m

precond: at(r , l), adjacent(l , m), not-occupied(m)
effects: at(r ,m), occupied(m), ¬occupied(l), ¬at(r , l),
not-occupied(l), ¬not-occupied(m)

Furthermore, if a problem has three locations (l1, l2, l3) such that only l1 is initially
occupied, we need to add to the initial state the propositions:

• not-occupied(l2)

• not-occupied(l3)

176/361

Extanding the Language

• This approach, which rewrites a planning problem into restricted
representation required by Graphplan, can also be used to handling
other extensions.

• For example, recall that an operator with a conditional effect can be
expanded into set of pairs (precondi , effectsi).

• Hence it is easy to rewrite it as several operators, one for each such
pair

• Quantified conditionan effects are similary expanded

• Such expansion may lead to an exponential number of operators
• It is preferable to generalize the algorithm for directly handling an

extended language

177/361

Extanding the Language

• Generalizing Graphplan for directly handling operators with
disjunctive preconditions can be done by considering the edges from
an action in Ai to its preconditions in Pi�1 as being a disjunctive set
of AND-connectors, as in AND/OR graph

• The definition of mutex between actions needs to be generalized
with respect to these connectors

• The set of resolvers in GP-Search, among which a nondeterministic
choice is made for achieving a goal, now has to take into account
not the actions but their AND-connector

178/361

Extanding the Language

• Directly handling operators with conditional effects requires more
significant modifications

• One has to start with generalized definition of dependency between
actions taking into accouny their conditional effects

• This is needed in order to keep the desirable result of proposition on
applicable actions’ set (an independent set of actions defines the
same state transitions for any permutation of the set)

• One also has to define a new structure of planning graph for
handling the conditional effects

• For example, for propagating a desired goal at level Pi , which is a
conditional effect over to its antecedent condition either in a positive
or in a negative way

• One also has to come up with ways to compute and propagate
mutex relations and with a generalization of the search procedure in
the new planning graph (cf. IPP Planner)

179/361

Improving the Planner: Memory Management

• The planning graph data structure makes explicit all the ground
atoms and instantiated actions of a problem

• The monotonic properties of the planning graph are essential to this
purpose.

• Because Pi�1 ✓ Pi and Ai�1 ✓ Ai , one does not need to keep these
sets explicitly but record for each proposition p the level i at wich p

appeared for the first time in the graph, and similarly for each action
• A symetrically technique can be used for mutex relation

• There is no need to record the graph after its fixed-point 
• Finally, several general programming techniques can be useful for

memory management
• For example, the bitvector data structure allows one to encode a

state and a proposition level Pi as a vector of n bits, where n is the
number of propositions in the problem

180/361

Improving the Planner: Removing Rigid Predicates

• The description of a domain involves rigid predicates that does not
vary from state to state

• In the DWR domain, the predicate adjacent, attached and belong are
rigid

• There is no operator that changes their truth values

• Once operators are instanciated into ground actions for a given
problem, one may remove the rigid predicates from preconditions
and effects because they play no further role in the planning process

• This simplication reduce the number of actions

• This preprocessing can be quite sophisticated and may allow one to
infer nonobvious types, symetries, and invariant properties, such as
permanent mutex relations.

181/361

Improving the Planner: The No-good table

• No-good tuples, as well as mutex relations play an essential role in
pruning the search

• Howerver, if we are searching to achieve a set of goals g in level i ,
and if g 0

2 ri such that g 0
⇢ g , we will not detect that g is not

achievable and prune the search
• The Extract procedure can be extended to test this type of set

inclusion
• But, this may involve a significant overhead (cf. UBTree structure

for a efficient test of inclusion)

• The problem of this improvement consists of turning out the
terminaison condition of the algorithm (|rj�1(i)| = |rj()|) holds
even if the procedure records and keeps in ri only no-good tuples g

such that no subset of g has been proven to be a no-good

182/361

Improving the Planner: Heuristics

• GP-Search procedure has to be focused with heuristics for:
1. selecting the next proposition p in the current set g

2. nondeterministically choosing the action in the resolvers

• A general heuristics consists of selecting first a proposition p that
lead to the smallest set of resolvers, i.e., the propositions p achieved
by the smallest number of actions

• A symetrically heuristics for the choice of an action supporting p is
to prefer no-op action first

• Other heuristics that are more specific to the planning graph
structure and more informed take into account the level at which
actions and propositions appear for the first time in the graph

• The later a proposition appears in the planning graph, the most
constrainted it is

• Hence, one would select the latest proposition first

183/361

Improving the Planner: CSP Techniques

• A number of algorithmic techniques allow one to improve the
efficiency of the search

• For example, one is the forward-checking technique:
• Before choosing an action a in resolvers for handling p, one checks

that this choice will not leave another pending proposition in g with
an empty set of resolvers.

• Forward-checking is a general algorithm for solving constraint
satisfaction problem

184/361

Extending the Independence Relation

• The concept of layered plans is defined with a strong requirement of
independent actions in each set ⇡

• In practice, we do not necessarily need to have every permutation of
each set be a valid sequence of actions

• We only need to ensure that there is at least one such permutation

• This is the purpose of the relation between action called allowance
relation, which is less constrained than the independence relation
while keeping the advantages of the planning graph

185/361

Extending the Independence Relation: Allowance Relation

• An action a allows an action b when b can be applied after a and the
resulting state contains the union of the positive effects of a and b

• This is the case when a does not delete a precondition of b and b

does not delete a positive effect of a:
• a allows b iff effects�(a) \ precond(b) = ; and
• effects�(b) \ effects+(a) = ;

• Allowance is weaker than independence
• Independence implies allowance:

• If a and b are independent, then a allows b and b allows a

• Note that when a allows b but b does not allow a, then a has to be
ordered before b

• Note also that allowance is not symmetrical relation

186/361

Extending the Independence Relation:
Allowance and Mutex Relation

• If we replace independence relation with allowance relation in the
mutex definition, we can say that two actions a and b are mutex
either:

1. when they have mutually exclusive preconditions, or
2. when a does not allow b and b does not allow a

• This definition leads to fewer mutex pairs between actions, and
consequently to fewer mutex relation between propositions

• On the same planning problem, the planning graph will have fewer
or at most the same number of levels, before reaching a goal or
fixed-pointn than with the independence relation

187/361

Extending the Independence Relation:
Example of Allowance Relation

Example

• Let a simple planning domain that has three actions (a, b and c)
and four propositions (p, q, r and s):

• precond(a) = {p} ; effects+(a) = {q}; effects�(a) = {}
• precond(b) = {p} ; effects+(b) = {r}; effects�(b) = {p}
• precond(c) = {q, r} ; effects+(c) = {s}; effects�(c) = {}

• Action a and b are not independent (b deletes a precondition of a)
• Hence, they will be mutex in any level of the planning graph

• Action a allows b:
• these actions will not be mutex with the allowance relation

188/361

Extending the Independence Relation:
Example of Allowance Relation

P0 P1 P2 P3A1 A2 A3

αq

Graph with independence relation

Graph with allowance relation

P0 P1 P2A1 A2

p

a

b

q

p

r

a

b

q

p

r

a

b

c

q

s

p

r

p

a

b

q

p

r

a

b

c

q

s

p

r

189/361

Extending the Independence Relation

• The benefit of the allowance relation (fewer mutex pair and a
smaller fixed-point) has a cost

• Since allowance relation is not symetrical, a set of pairwise
nonmutex actions does not necessarily contain a “valid” permutation

• For instance, if a allows b, b allows c and c allows a but none of the
opposite relations holds, then the three actions a, b and c can be
nonmutex.

• But there is no permutation that gives an applicable sequence of
actions and a resulting state corresponding to the union of their
positive effects

• Remember that earlier a set of nonmutex actions was necessarily
independent and could not be selected in the search phase for a plan
(here we have to add a further requirements for the allowance
relation within a set)

190/361

Extending the Independence Relation

• A permutation ha1, . . . , ani of the elements of a set ⇡ is allowed if
every action allows all its followers in the permutation:

8i , k : ifj < k , then aj allows ak

• A set is allowed if it has at least one allowed permutation

• The state resulting from the application of an allowed set can be
defined as previously:

�(s,⇡i) = (s � effects�(⇡i)) [effects+(⇡)

• All previous propositions remain valid

191/361

Extending the Independence Relation

• In order to compute �(s,⇡i) and to use such as a set in the
GP-Search procedure one does not need to produce an allowed
permutation and to commit the plan to it one just needs to check its
existence

• We already noriced that an ordering constraints “a before b” would
be required whenever a allows b but b soies not allows a

• It is easy to prove that a set is allowed if the relation consisting of
all pairs (a, b) such that “b doies allow a” is cycle free.

• This can be checked with a topological sorting algorithm in
complexity that is linear in the number of actions and allowance pair

• Such a test must be take place in the GP-Search procedure

192/361

Extending the Independence Relation

Algorithm (GP-Search(G , g ,⇡, i))

if g = ; then
if ⇡i is not allowed then return failure;
⇧ Extract(G ,

S
{precond(a) | 8a 2 ⇡}, i � 1)

if ⇧ = failure then return failure
return ⇧.h⇡i

else
select any p 2 g

resolvers {a 2 Ai | p 2 effects+(a) and 8b 2 ⇡ : (a, b) 62 µAi}

if resolvers = ; then return failure
nondeterministically choose a 2 resolvers
return GP-Search(G , g� effects+(a),⇡ [{a}, i)

end

193/361

Extending the Independence Relation

• The modifications bring to Graphplan to take into account allowance
relation keep Graphplan sound and complete

• The allowance relation lead to fewer mutex pairs, hence to more
action in a level and to fexer level in the planning graph

• The reduced search space increase the performance of the algorithm

• The benefit can be very significant for highly constraint problem
where the search phase is very expensive

194/361

To go further

Exercices

Exercice 1
Let P = (O, s0, g) and P0 = (O, s0, g 0) be the statements of two solvable planning
problems such that g ✓ g 0. Suppose we run Graphplan on both problems,
generating planning graphs G and G 0. Is G ✓ G 0 ?

Exercice 2
Detail the modifications required for handling operator with disjunctive preconditions
in the modification if mutex relations and in the planning procedures.

Exercice 3
Discuss the strucrure of plans as output by Graphplan with allowance relation.
Compare these plans to sequences of independent sets of actions, to plan that are
simple sequences of actions, and to partially ordered sets of actions.

195/361

Further readings

A. Blum and M. Furst.
Fast planning through planning graph analysis
Artificial Intelligence, 90(1-2):281 300, 1997

Kambhampati, E. Parker, and E. Lambrecht.
Understanding and extending Graphplan
In Proceedings of the European Conference on Artificial Intelligence,
pages 260- 272, 1997

A. Gerevini and I. Serina.
A planner based on local search for planning graphs with
action costs
In Proceedings of the Artificial Intelligence Planning Systems, pages
13 -22, 2002.

J. Koehler.
Handling of conditional effects and negative goals in IPP
Technical report, Freiburg University, 1999.

196/361

