Part VI

Propositional Satisfiability Techniques

197/361

Ouline

- In this chapter we focuse on:
 - 1. the encoding of planning problem into satisfiability problem
 - 2. the description of some existing satisfiability procedures used in planning
 - discussing a way to translate a planning problem to a proposition formula
 - showing how standard decision procedures can be used as planning procedure
 - 5. discussing some different ways to encode planning problem

199/361

Introduction

- The general idea is to map a planning problem to a well-known problem for which effective algorithms exist
- More specifically, the idea is to formulate a planning problem as a proposition satisfiability problem
- The approach can be split in 3 steps:
 - 1. A planning problem is encoded as propositional formula
 - 2. A satisfiability decision procedure determines whether the formula is satisfiable by assigning truth values to the propositional variables
 - 3. A plan is extract from the assignments determined by the satisfiability decision procedure

198/361

Planning problem as Satisfiability Problems

Planning problem as Satisfiability Problems

- ullet Suppose a classical planning problem $\mathcal{P} = (\Sigma, s_0, \mathcal{S}_g)$ where
 - $\Sigma = (S, A, \gamma)$ is the planning domain
 - S the set of states
 - A the set of actions
 - \bullet γ the deterministic transition function
 - s₀ the initial state and
 - S_g the set of goal states.
- In planning as satisfiability approach, a problem $\mathcal P$ must be encoded as propositional formulate with the property that any its models to solution plan of $\mathcal P$
- A model of propositional formula is a truth assignement to its variables for which the formula is evaluated to true
- A formula is satisfiable if a model of the formula exists.

200/361

States as Propositional Formula

Intended and Unintended Model

- Suppose we have second location I2, we have a second propositional variable at(r1,I2)
- We want to represent that r1 is at location l1 and not loaded
- We have two models

$$\mu_1 = \{ \mathsf{at(r1,l1)} \leftarrow \mathit{true}, \mathsf{loaded(r1)} \leftarrow \mathit{false}, \mathsf{at(r1,l2)} \leftarrow \mathit{true} \}$$

$$\mu_2 = \{ \mathsf{at(r1,l1)} \leftarrow \mathit{true}, \mathsf{loaded(r1)} \leftarrow \mathit{false}, \mathsf{at(r1,l2)} \leftarrow \mathit{false} \}$$

- μ_1 is a uninted model (r1 cannot be at two locations at the same time)
- To remove unintended model we have to modify our previous formulas

$$\mathsf{at}(\mathsf{r}1,\mathsf{l}1) \land \neg \mathsf{at}(\mathsf{r}1,\mathsf{l}2) \land \neg \mathsf{loaded}(\mathsf{r}1)$$

States as Propositional Formula

- Similar to classical representation, propositional formulas are used to represent facts that hold in a state
- Suppose we would like to describe the state with one robot r1 and one location l1:

$$at(r1,l1) \land \neg loaded(r1)$$

• A model μ to this formula is the pne that assigns true to the propositional variable at(r1,l1), and false to loaded(r1) such as

$$\mu = \{ \mathsf{at}(\mathsf{r1},\mathsf{l1}) \leftarrow \mathit{true}, \mathsf{loaded}(\mathsf{r1}) \leftarrow \mathit{false} \}$$

201/361

States as Propositional Formula

Representing a set of states

• A propositional formula can reprsent sets of states rather than a single state, e.g.,

$$(\mathsf{at}(\mathsf{r1},\mathsf{l1}) \land \neg \mathsf{at}(\mathsf{r1},\mathsf{l2})) \lor (\neg \mathsf{at}(\mathsf{r1},\mathsf{l1}) \land \mathsf{at}(\mathsf{r1},\mathsf{l2})) \land \neg \mathsf{loaded}(\mathsf{r1})$$

Remarks

- 1. Encoding states as propositional formulas is straightforward
- Propositional formulas encode states but the encode the dynamics of the system
- 3. We need to add specific propositional formula to encode the state evolving

202/361 203/361

States Transitions as Propositional Formulas

• The state resulting from the application of an action is defined by the transition function $\gamma: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$

The state s_1 and s_2 can be defined as follows:

$$s_1 = \{\mathsf{at}(\mathsf{r1},\mathsf{l1}) \land \neg \mathsf{at}(\mathsf{r1},\mathsf{l2})\}$$
$$s_2 = \{\neg \mathsf{at}(\mathsf{r1},\mathsf{l1}) \land \neg \mathsf{at}(\mathsf{r1},\mathsf{l2})\}$$

⇒ We need to differentiate the propositional variable true in a state

204/361

States Transitions as Propositional Formulas

- We encode the state transition from s_1 to s_2 but ...
- We need to encode the fact that move(r1,l1,l2) causes this transition
- To do this, we have to introduce a new propositional variable move(r1,|1,|2,s1)
- The transition function $\gamma(s_1, moved r1, l1, l2)$ can be encoded as follows:

$$\mathsf{move}(\mathsf{r1},\mathsf{l1},\mathsf{l2},\mathsf{s1}) \land \mathsf{at}(\mathsf{r1},\mathsf{l1},\mathsf{S1}) \land \neg \mathsf{at}(\mathsf{r1},\mathsf{l2}\mathsf{nS1}) \land \neg \mathsf{at}(\mathsf{r1},\mathsf{l1},\mathsf{s2}) \land \mathsf{at}(\mathsf{r1},\mathsf{l2},\mathsf{s2})$$

• A model for this formula is

$$\mu_4 = \{ move(r1,|1,|2,S1) \leftarrow true$$

$$at(r1,|1,s1) \leftarrow true, at(r1,|2,s2) \leftarrow false,$$

$$at(r1,|1,s2) \leftarrow false, at(r1,|2,s2) \leftarrow true \}$$

States Transitions as Propositional Formulas

The transition below

can be represented by the following propositional formula:

$$at(r1,|1,s1) \land \neg at(r1,|2,s1) \land \neg at(r1,|1,s2) \land at(r1,|2,s2)$$

• A model for this formula is

$$\mu_3 = \{ at(r1,|1,s1) \leftarrow true, at(r1,|2,s2) \leftarrow false, at(r1,|1,s2) \leftarrow false, at(r1,|2,s2) \leftarrow true \}$$

205/361

Planning problem as Propositional Formulas

- Now that we know, encode a state and a transition as propositional formulas, we can encode a planning problem to a propositional formula Φ . The construction of Φ is based on three ideas:
 - Restrict the planning problem to the problem of finding a plan of known length n. This problem is called the b ounded planning problem
 - 2. Transform the bounded planning problem into a satisfiability problem
 - 3. Try to solve incrementally step by step the satisfiability problem by increasing the size of the bounded planning problem

206/361 207/361

Planning problem as Propositional Formulas

Encoding predicates

- ullet Predicate symbol with k arguments is translated into a symbol of k+1 arguments where the last argument is the step
- In the case of predicate symbols at(r1,l1), we have at(r1,l1,i), $0 \le i \le n$
- This means that the robot r1 is at location l1 at step i

Remark

We call fluent the ground atomic formula that describe states at a given step, e.g., at(r1,|1,i).

208/361

Planning problem as Propositional Formulas

Bound on maximum plan length

- A bounded planning problem can be easily extended to the problem of finding a plan length $\leq n$, with the use of dummy action that does nothing
- If a solution exists, the plan has a maximum length less or equal to the number of sates of the problem
- The number of states of a problem is double exponential in the number of constants symbols and predicates arity

$$n \leq 2^{|D|^{A_p}}$$

where

- |D| is the number of constants of the domain
- A_p is the maximum arity of the predicates
- In practice, we hope find a solution before exploring the whole search space ...

Planning problem as Propositional Formulas

Encoding actions

- Action symbol with k arguments is translated into a symbol of k+1 arguments where the last argument is the step
- In the case of action symbols move(r1,l1,l2), we have move(r1,l1,l2,i), $0 \le i \le n-1$
- \bullet This means that the robot r1 move from location l1 to location l2 at step i
- The action move(r1,l1,l2,i) executed at step i will produce its effects at step i+1

209/361

A Complete Encoding

Initial State

• The initial state is encoded as a proposition that is the conjunction of fluents that hold in the initial state and of the negation of those that do not hold, all of them instantiated at step 0:

$$\bigwedge_{f \in s_0} f_0 \wedge \bigwedge_{f \notin s_0} \neg i$$

• The initial state is thus fully specified

A Complete Encoding

Goal States

• The set of goal states is encoded as a proposition that is the conjunction of fluents that must hold at step *n*:

$$\bigwedge_{f \in g^+} f_n \wedge \bigwedge_{f \not\in g^-} \neg f_n$$

• The goal state is partially specified by the conjunction of the fluents that hold in all the goal states

212/361

A Complete Encoding

Frame Problem

- We need tp state that an action changes only the fluents that are in its effects
- In other words, if a fluent changes, then one of the action that have that fluent in its effects has been executed.
- For each fluent f and for each $0 \le i \le n-1$, we have:

$$\neg f_i \wedge f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in \mathsf{effects}^+(a)} a_i\right) \wedge f_i \wedge \neg f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in \mathsf{effects}^-(a)} a_i\right)$$

A Complete Encoding

Action Effects

- The fact that an action, when applicable, has some effects is encoded with a formula that states that if the action takes place at a given step, then its preconditions must hold at that step and its effects will hold at the next step.
- Let A be the set of all possible actions. For each $a \in A$ and for each 0 < i < n 1; we have:

$$a_i \Rightarrow \left(igwedge_{p \in \mathsf{precond}(a)} p_i \land igwedge_{e \in \mathsf{effects}(a)} e_{i+1}
ight)$$

213/361

A Complete Encoding

Exclusion axiom

- The fact that only one action occurs at each step is garanteed by the following formula, which is called the complete exclusion axiom
- For each for each $0 \le i \le n-1$ and for each distinct $a_i, b_i \in A$, we have:

$$\neg a_i \lor \neg b_i$$

214/361 215/361

A simple concrete example (1/3)

- Consider a simple example, where we have on robot r1 and two location l1 and l2
- Let suppose that the robot can move between two locations
- In the initial state, the robot is at l1
- In the goal state, the robot must be at 12
- The operator that moves the robot is:

```
move(r,l,l')
precond: at(r,l)
effects: at(r,l'), \negat(r,l)
```

• A solution plan of length 1 is enough to reach the goal state

216/361

A simple concrete example (3/3)

• The frame axioms are expressed as:

(at1)
$$\neg at(r1, |1,0) \land at(r1, |1,1) \Rightarrow move(r1, |2, |1,0)$$

$$(\mathsf{at2}) \quad \neg \mathsf{at}(\mathsf{r1},\mathsf{l2},\!0) \land \mathsf{at}(\mathit{r1},\mathit{l2},\!1) \quad \Rightarrow \mathsf{move}(\mathsf{r1},\mathsf{l1},\mathsf{l2},\!0)$$

(at3)
$$at(r1,l1,0) \land \neg at(r1,l1,1) \Rightarrow move(r1,l1,l2,0)$$

(at4)
$$at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0)$$

• The exclusion axiom:

$$\neg move(r1,l1,l2,0) \lor \neg move(r1,l2,l1,0)$$

A simple concrete example (2/3)

 The initial and goal states are encoded as formulas (init), and (goal), respectively:

(init)
$$\operatorname{at}(r1,|1,0) \wedge \neg \operatorname{at}(r1,|2,0)$$

(goal) $\operatorname{at}(r1,|2,1) \wedge \neg \operatorname{at}(r1,|1,1)$

• The action is encoded as:

(move1) move(r1,l1,l2,0)
$$\Rightarrow$$
 at(r1,l1,0) \wedge at(r1,l2,1) \wedge ¬at(r1,l1,1) (move2) move(r1,l2,l1,0) \Rightarrow at(r1,l2,0) \wedge at(r1,l1,1) \wedge ¬at(r1,l2,1)

217/361

Encoding Formalisation and Definition

- Let $\Sigma = (S, A, \gamma)$ be a deterministic state transition system
- Let $\mathcal{P} = (\Sigma, s_0, S_g)$ be a classical planning problem where s_0 and S_g are the initial and goal states of the planning problem \mathcal{P}
- Let Enc be a function that takes a planning problem \mathcal{P} and a length bound n and returns a propositional formula $\Phi : Enc(\mathcal{P}, \setminus) = \Phi$

Definition

Enc encodes the planning problem \mathcal{P} to a satisfiability problem when the following hold: Φ is satisfiable iff there exist a solution plan of length n to \mathcal{P} . We say, in short, that Enc encodes planning to satisfiability.

218/361 219/361

Planning by Satisfiability

Davis and Putnam Procedure

- The Davis and Putman procedure is one of the first proposed but still one of the most used
- The procedure takes as input a propositional formula Φ and return a model μ if Φ is satisfiable
- The procedure assumes that Φ is in CNF (Conjunctive Normal Form), i.e., a conjunction of literals (positive or negative propositional variables)
- The procedure performs a depth-first search through the space of all possible assignments until either a model is found or the entire search space without is explored
- The procedure uses a simplification mechanism to reduce the size of the formula when variable are assigned

Planning by Satisfiability

- One a bounded planning problem is encoded to a satisfiability problem, a model for the resulting formula can be constructed by a satisfiability decision procedure
- Many procedures have been proposed in particular:
 - The algorithms based on the Davis-Putnam procedure are sound and complete
 - 2. The procedures bases on the idea of randomized local search, called stochastic procedures are sound but not complete. This procedures can sometimes scale up better than the complete algorithms.

220/361

Davis and Putnam Procedure

Algorithm

$\textbf{Algorithm (Davis-Putnam}(\Phi,\mu)\textbf{)}$

```
if \emptyset \in \Phi then return failure if \Phi = \emptyset then return \mu Unit-Propagate (\phi, \mu) Select a variable P such that P or \neg P occurs in \Phi Davis-Putnam (\phi \cup \{P\}, \mu) Davis-Putnam (\phi \cup \{\neg P\}, \mu)
```

Algorithm (Unit-Propagate(Φ, μ))

```
\label{eq:while there is a unit clause } \begin{aligned} & \text{while there is a unit clause } \{I\} \in \Phi \text{ do} \\ & \mu \leftarrow \mu \cup \{I\} \\ & \text{for every clause } C \in \Phi \text{ do} \\ & \text{if } I \in C \text{ then } \Phi \leftarrow \Phi - \{C\} \\ & \text{else if } \neg I \in C \text{ then } \Phi \leftarrow \Phi - \{C\} \cup \{C - \{\neg I\}\} \end{aligned}
```

221/361 222/361

Davis and Putnam Procedure

Remarks

Remarks

- \bullet The variable section rule may be as simple as choosing the first remaining variable in Φ
- It can select variables occurring in a clause of minimal length
- It can select variables occurring with a maximum number of occurrences in minimum-size clauses
- \Rightarrow eliminate clauses as early as possible in the search

223/361

Stochastic Procedures

- Davis-Putman procedire works with partial assignments
 - at each step, not all variables are assign a truth value
 - \bullet at the initial step, μ is empty, then it is incrementally constructed by adding assignments to variables
- A alternative idea is to devise algorithms that work from the beginning on total assignments
- A trivial algorithms is the one that
 - 1. Randomly selects an initial total assignments
 - 2. Checks wether there is a model and if not
 - 3. iteratively choose a different assignment until a model is found or all assignments were tested
- This algorithm is sound and complete but not feasible in practice
- This algorithm can be used as basic idea for incomplete satisfiability decision procedures

Davis and Putnam Procedure

Example

• Consider the following propositional formula in CNF:

$$D$$
 and (not D or not B) and (not D or not A or not B) and (not D or not A or not B) $\mu = \{\}$

Unit Propagation

(A or not B) and (not A or not B) and (not A or B)

 $\mu = \{D\}$

Variable Splitting

 $\mu = \{D, A\}$

not B and B not B

Unit Propagation

false false true $\mu = \{D, \text{ not } A, \text{ not } B\}$

 $\Phi = D \wedge (\neg D \vee A \vee \neg B) \wedge (\neg D \vee \neg A \vee \neg B) \wedge (\neg D \vee \neg A \vee B) \wedge (D \vee A)$

224/361

Local Search Procedure

Algorithm (Local-Search-SAT(Φ))

Remarks

- The procedure is based on randomized local search
- The cost funnction compute the number of clauses of Φ that is satisfy by μ
- The procedure is incomplete due to local minima

225/361 226/361

GSAT Algorithm

Algorithm (Basic-GSAT(Φ))

Remarks

- The choice of the assignment mechanism helps avoid local minima
- Real implementation of GSAT restart from a new initial assignment when the procedure fails
- The procedure is incomplete

227/361

Iterative Repair Approach

Random-Walk

- A well-known version of Iterative-Repair procedure is Random-Walk
- \bullet Random-Walk implements the step "Modify μ to satisfy ${\cal C}$ " in a way that ressembles to GSAT
 - By flipping iteratively one variable in C
- It has been shown that Random-Walk suffers several problems on formulas of a certain complexity
- A probabilistic greedy version of Random-Walk has been proposed, called Walksat
- After *C* is selected randomly, Walksat selects randomly the variable to flipped among the following possibilities to mix non greedy and greedy search:
 - 1. a random variable in C or
 - 2. the variable ${\it C}$ that lead to the greatest number of satisfied clauses when flipped

Iterative Repair Approach

- The idea is to iteratively modify a truth assignment such that it satisfies one of the unsatisfied clauses selected according to some criterion
- A unsatisfied clause is seen as a "fault" to be "repair"
- This method differ from previous ones in that at every step the number of clause unsatisfied may increase

Algorithm (Iterative-Repair(Φ))

```
Select any \mu while \mu does not satisfy \Phi do if iteration limit exceeded then return Failure Select any clause C \in \Phi not satisfied by \mu Modify \mu to satisfy C end return \mu
```

228/361

Different Encodings

229/361

Different Encodings

Action Representation

- The encoding presented previously is one encoding
- Since the SAT search procedure takes time exponential in the number of variables, the choice of encoding is critical

230/361

231/361

Action Representation

Simple Operator Splitting

- The idea is to replace each *n*-ay action proposition with *n* unary propositions
- For instance, a proposition variable move(r1,l1,l2,i) is replaced by $\mathsf{move}(\mathsf{r1},i) \land \mathsf{move}(\mathsf{l1},i) \land \mathsf{move}(\mathsf{l2},i)$
- The advantage is that each operator share the same variable
- Simple operator splitting results in $|A| = n|O||D|A_0$

The encoding presented previously, each action is represented by a different logical variable at each step

- This results in $|A| = n|O||D|_0^A$ propositional variables to encode actions with
 - *n* the number of steps
 - O the number of operators
 - D the number of constant in the domain and
 - A₀ the maximum arity of operators

Action Representation

Overloaded Operator Splitting

- Thus generalize the idea if simple operator splitting by allowing different operator to share the same variable
- This done by representing the action, e.g., move, as the argument of a general action predicate Act
- For instance, move(r1,l1,l2,i) is replaced by $Act(move, i) \land Act1(r1,i) \land Act2(l1,i) \land Act3(l2,i)$
- An action for instance fly(r1,l1,l2,i) can share variables Act1(r1,i),
 Act2(l1,i) and Act3(l2,i) with move(r1,l1,l2,i)
- Overloaded operator splitting results in $|A| = n()|O| + |D|A_0$

232/361 233/361

Action Representation

Bitwise

- The idea is to provide m bits that encode each action
- For instance, if we have 4 actions:
 - $a_1 = move(r1, |1, |2, i)$
 - $a_2 = move(r1, |2, |1, i)$
 - $a_3 = move(r2, |1, |2, i)$
 - $a_4 = move(r2, |2, |1, i)$
- We can use just two bits : bit1(i) and bit2(i)
- The formula $bit1(i) \land bit2(i)$ can represent a_1 , $bit1(i) \land \neg bit2(i)$ a_2 , etc.
- Bitwise representation results in reducing the number of variables to $\lceil log_2|A| \rceil$

234/361

- This is the most obvious formalization of the fact that actions change only what is explicitly states
- For each action a, for each fluent $f \notin effects(a)$, and for each $0 \le i \le n-1$ we have:

$$f_i \wedge a_i \Rightarrow f_{i+1}$$

• Problem if a_i does not occurs at step i, a_i is false and the frame axiom does not constraints the value of f_{i+1} which can therefore takes an arbitrary value

235/361

Frame Axiom

Classical Frame Axiom

- For instance: consider this classical frame axiom: unloaded(r1, i) \land move(r1, l1, l2, i) \Rightarrow unloaded(r1, i + 1)
- When the robot is move from l1 to l2 at step i the robot might be loaded magically
- A solution is to add the at-least-one axioms, i.e., a disjunction of every possible action at step i, that assures that least one action is performed:

 $\bigvee a_i$

Frame Axiom

Frame Axiom

Classical Frame Axiom

Explanatory Frame Axiom

- In our first encoding, Explanatory Frame Axiom was used to encode that just one action occurs at a given step.
- Thus solution plan are totally ordered
- It could be interested to have concurrent plan
- Explanatory Frame Axiom can be relaxed by defining only inconsistent actions

Size of the different encodings

Actions	Number of variables
Regular	$n F + n O D _0^A$
Simple Splitting	$n F + n O D A_0$
Overloaded Splitting	$n F + n(O + D A_0)$
Bitwise	$n F + n\lceil \log_2 O D _0^A \rceil$

- *n* the number of steps
- O the number of operators
- D the number of constant in the domain and
- A₀ the maximum arity of operators
- |F| is the number of fluents with $|F| = |P||D|_p^A$ with |P| the number of predicate and A_p the maximum arity of predicates

238/361

To go further

Size of the different encodings

Actions	Frame axiom	Number of variables
Regular	Classical	O(n F A)
Regular	Explanatory	$O(n F A +n A ^2)$
Simple Splitting	Classical	$O(n F A A_0 + n A A_0^{ A })$
Simple Splitting	Explanatory	$O(n F A_0^{ A } + n(A A_0)^2)$
Overloaded Splitting	Classical	$O(n F A A_0) + n(A A_0)^{ A }$
Overloaded Splitting	Explanatory	$O(n F (A A_0)^2 + n(F A A_0)^{ A })$
Bitwise	Classical	$O(n F A \log_2 A)$
Bitwise	Explanatory	$O(n F A (log_2 A)^{ A })$

• $|A| = |O||D|^{A_0}$ is the number of actions of the problem

239/361

Exercices

Exercice 1

Are the following formulas satisfied?

$$(\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land (D \lor A)$$
$$(D \to (A \to \neg B)) \land (D \lor (\neg A \to \neg B)) \land (\neg D \lor \neg A \lor B) \land (D \leftarrow A)$$

Run the Davis-Putnam procedure on them and explain the result. Also run a stochastic procedure.

To go further

Further readings

H. Kautz, B. Selman

Planning as Satisfiability.

ECAI 1992: 359-363

J. Rintanen

Planning and SAT.

Handbook of Satisfiability 2021: 765-789

241/361