
Part VI

Propositional Satisfiability
Techniques

197/361

Introduction

• The general idea is to map a planning problem to a well-known
problem for which effective algorithms exist

• More specifically, the idea is to formulate a planning problem as a
proposition satisfiability problem

• The approach can be split in 3 steps:
1. A planning problem is encoded as propositional formula
2. A satisfiability decision procedure determines whether the formula is

satisfiable by assigning truth values to the propositional variables
3. A plan is extract from the assignments determined by the

satisfiability decision procedure

198/361

Ouline

• In this chapter we focuse on:
1. the encoding of planning problem into satisfiability problem
2. the description of some existing satisfiability procedures used in

planning
3. discussing a way to translate a planning problem to a proposition

formula
4. showing how standard decision procedures can be used as planning

procedure
5. discussing some different ways to encode planning problem

199/361

Planning problem as
Satisfiability Problems

Planning problem as Satisfiability Problems

• Suppose a classical planning problem P = (⌃, s0, Sg) where
• ⌃ = (S ,A, �) is the planning domain
• S the set of states
• A the set of actions
• � the deterministic transition function
• s0 the initial state and
• Sg the set of goal states.

• In planning as satisfiability approach, a problem P must be encoded
as propositional formulate with the property that any its models to
solution plan of P

• A model of propositional formula is a truth assignemnent to its
variables for which the formula is evaluated to true

• A formula is satisfiable if a model of the formula exists.

200/361

States as Propositional Formula

• Similar to classical representation, propositional formulas are used to
represent facts that hold in a state

• Suppose we would like to describe the state with one robot r1 and
one location l1:

at(r1,l1) ^ ¬loaded(r1)

• A model µ to this formula is the pne that assigns true to the
propositional variable at(r1,l1), and false to loaded(r1) such as

µ = {at(r1,l1) true, loaded(r1) false}

201/361

States as Propositional Formula
Intended and Unintended Model

• Suppose we have second location l2, we have a second propositional
variable at(r1,l2)

• We want to represent that r1 is at location l1 and not loaded

• We have two models

µ1 = {at(r1,l1) true, loaded(r1) false, at(r1,l2) true}

µ2 = {at(r1,l1) true, loaded(r1) false, at(r1,l2) false}

• µ1 is a uninted model (r1 cannot be at two locations at the same
time)

• To remove unintended model we have to modify our previous
formulas

at(r1,l1) ^ ¬at(r1,l2) ^ ¬loaded(r1)

202/361

States as Propositional Formula
Representing a set of states

• A propositional formula can reprsent sets of states rather than a
single state, e.g.,

(at(r1,l1) ^ ¬at(r1,l2)) _ (¬at(r1,l1) ^ at(r1,l2)) ^ ¬loaded(r1)

Remarks

1. Encoding states as propositional formulas is straightforward

2. Propositional formulas encode states but the encode the dynamics of
the system

3. We need to add specific propositional formula to encode the state
evolving

203/361

States Transitions as Propositional Formulas

• The state resulting from the application of an action is defined by
the transition function � : S ⇥ A! S

S1 S2

move(r1, l1, l2)

at(r1, l1)
not at (r1, l2)

at(r1, l2)
not at (r1, l1)

The state s1 and s2 can be defined as follows:

s1 = {at(r1,l1) ^ ¬at(r1,l2)}

s2 = {¬at(r1,l1) ^ ¬at(r1,l2)}

) We need to differentiate the propositional variable true in a state

204/361

States Transitions as Propositional Formulas

• The transition below

S1 S2

move(r1, l1, l2)

at(r1, l1)
not at (r1, l2)

at(r1, l2)
not at (r1, l1)

can be represented by the following propositional formula:

at(r1,l1,s1) ^ ¬at(r1,l2,s1) ^ ¬at(r1,l1,s2) ^ at(r1,l2,s2)

• A model for this formula is

µ3 = { at(r1,l1,s1) true, at(r1,l2,s2) false,

at(r1,l1,s2) false, at(r1,l2,s2) true}

205/361

States Transitions as Propositional Formulas

206/361

• We encode the state transition from s1 to s2 but ...

• We need to encode the fact that move(r1,l1,l2) causes this transition

• To do this, we have to introduce a new propositional variable
move(r1,l1,l2,s1)

• The transition function �(s1,movedr1, l1, l2) can be encoded as follows:

move(r1,l1,l2,s1) ^ at(r1,l1,S1) ^ ¬at(r1,l2nS1) ^ ¬at(r1,l1,s2) ^ at(r1,l2,s2)

• A model for this formula is

µ4 = { move(r1,l1,l2,S1) true

at(r1,l1,s1) true, at(r1,l2,s2) false,

at(r1,l1,s2) false, at(r1,l2,s2) true}

Planning problem as Propositional Formulas

• Now that we know, encode a state and a transition as propositional
formulas, we can encode a planning problem to a propositional
formula �. The construction of � is based on three ideas:

1. Restrict the planning problem to the problem of finding a plan of
known length n. This problem is called the b ounded planning
problem

2. Transform the bounded planning problem into a satisfiability problem
3. Try to solve incrementally step by step the satisfiability problem by

increasing the size of the bounded planning problem

207/361

Planning problem as Propositional Formulas
Encoding predicates

• Predicate symbol with k arguments is translated into a symbol of
k + 1 arguments where the last argument is the step

• In the case of predicate symbols at(r1,l1), we have at(r1,l1,i),
0  i  n

• This means that the robot r1 is at location l1 at step i

Remark
We call fluent the ground atomic formula that describe states at a given
step, e.g., at(r1,l1,i).

208/361

Planning problem as Propositional Formulas
Encoding actions

• Action symbol with k arguments is translated into a symbol of k + 1
arguments where the last argument is the step

• In the case of action symbols move(r1,l1,l2), we have
move(r1,l1,l2,i), 0  i  n � 1

• This means that the robot r1 move from location l1 to location l2 at
step i

• The action move(r1,l1,l2,i) executed at step i will produce its effects
at step i + 1

209/361

Planning problem as Propositional Formulas
Bound on maximum plan length

• A bounded planning problem can be easily extended to the problem
of finding a plan length  n, with the use of dummy action that
does nothing

• If a solution exists, the plan has a maximum length less or equal to
the number of sates of the problem

• The number of states of a problem is double exponential in the
number of constants symbols and predicates arity

n  2|D|Ap

where
• |D| is the number of constants of the domain
• Ap is the maximum arity of the predicates

• In practice, we hope find a solution before exploring the whole
search space ...

210/361

A Complete Encoding
Initial State

• The initial state is encoded as a proposition that is the conjunction
of fluents that hold in the initial state and of the negation of those
that do not hold, all of them instantiated at step 0:

^

f2s0

f0 ^
^

f 62s0

¬f0

• The initial state is thus fully specified

211/361

A Complete Encoding
Goal States

• The set of goal states is encoded as a proposition that is the
conjunction of fluents that must hold at step n:

^

f2g+

fn ^

^

f 62g�

¬fn

• The goal state is partially specified by the conjunction of the fluents
that hold in all the goal states

212/361

A Complete Encoding
Action Effects

• The fact that an action, when applicable, has some effects is
encoded with a formula that states that if the action takes place at
a given step, then its preconditions must hold at that step and its
effects will hold at the next step.

• Let A be the set of all possible actions. For each a 2 A and for each
0  i  n � 1; we have:

ai)

0

@
^

p2precond(a)

pi ^

^

e2effects(a)

ei+1

1

A

213/361

A Complete Encoding
Frame Problem

• We need tp state that an action changes only the fluents that are in
its effects

• In other words, if a fluent changes, then one of the action that have
that fluent in its effects has been executed.

• For each fluent f and for each 0  i  n � 1, we have:

¬fi ^ fi+1)

0

@
_

a2A|fi2effects+(a)

ai

1

A ^

fi ^ ¬fi+1)

0

@
_

a2A|fi2effects�(a)

ai

1

A

214/361

A Complete Encoding
Exclusion axiom

• The fact that only one action occurs at each step is garanteed by
the following formula, which is called the complete exclusion axiom

• For each for each 0  i  n � 1 and for each distinct ai , bi 2 A, we
have:

¬ai _ ¬bi

215/361

A simple concrete example (1/3)

• Consider a simple example, where we have on robot r1 and two
location l1 and l2

• Let suppose that the robot can move between two locations

• In the initial state, the robot is at l1

• In the goal state, the robot must be at l2
• The operator that moves the robot is:

move(r ,l ,l 0)
precond: at(r ,l)
effects: at(r ,l 0), ¬at(r ,l)

• A solution plan of length 1 is enough to reach the goal state

216/361

A simple concrete example (2/3)

• The initial and goal states are encoded as formulas (init), and
(goal), respectively:

(init) at(r1,l1,0) ^ ¬at(r1,l2,0)

(goal) at(r1,l2,1) ^ ¬at(r1,l1,1)

• The action is encoded as:

(move1) move(r1,l1,l2,0))

at(r1,l1,0) ^ at(r1,l2,1) ^ ¬at(r1,l1,1)

(move2) move(r1,l2,l1,0))

at(r1,l2,0) ^ at(r1,l1,1) ^ ¬at(r1,l2,1)

217/361

A simple concrete example (3/3)

• The frame axioms are expressed as:

(at1) ¬at(r1,l1,0) ^ at(r1, l1, 1)) move(r1,l2,l1,0)

(at2) ¬at(r1,l2,0) ^ at(r1, l2, 1)) move(r1,l1,l2,0)

(at3) at(r1,l1,0) ^ ¬at(r1, l1, 1)) move(r1,l1,l2,0)

(at4) at(r1,l2,0) ^ ¬at(r1, l2, 1)) move(r1,l2,l1,0)

• The exclusion axiom:

¬move(r1,l1,l2,0) _ ¬move(r1,l2,l1,0)

218/361

Encoding Formalisation and Definition

• Let ⌃ = (S ,A, �) be a deterministic state transition system

• Let P = (⌃, s0, Sg) be a classical planning problem where s0 and Sg

are the initial and goal states of the planning problem P

• Let Enc be a function that takes a planning problem P and a length
bound n and returns a propositional formula � : Enc(P, \) = �

Definition
Enc encodes the planning problem P to a satisfiability problem when the
following hold: � is satisfiable iff there exist a solution plan of length n

to P. We say, in short, that Enc encodes planning to satisfiability.

219/361

Planning by Satisfiability

Planning by Satisfiability

• One a bounded planning problem is encoded to a satisfiability
problem, a model for the resulting formula can be constructd by a
satisfiability decision procedure

• Many procedures have been proposed in particular:
1. The algorithms based on the Davis-Putnam procedure are sound and

complete
2. The procedures bases on the idea of randomized local search, called

stochastic procedures are sound but not complete. This procedures
can sometimes scale up better than the complete algorithms.

220/361

Davis and Putnam Procedure

• The Davis and Putman procedure is one of the first proposed but
still one of the most used

• The procedure takes as input a propositional formula � and return a
model µ if � is satisfiable

• The procedure assumes that � is in CNF (Conjunctive Normal
Form), i.e., a conjunction of literals (positive or negative
propositional variables)

• The procedure performs a depth-first search through the space of all
possible assignments until either a model is found or the entire
search space without is explored

• The procedure uses a simplification mechanism to reduce the size of
the formula when variable are assigned

221/361

Davis and Putnam Procedure
Algorithm

Algorithm (Davis-Putnam(�, µ))

if ; 2 � then return failure
if � = ; then return µ

Unit-Propagate (�, µ)

Select a variable P such that P or ¬P occurs in �

Davis-Putnam (� [{P}, µ)

Davis-Putnam (� [{¬P}, µ)

Algorithm (Unit-Propagate(�, µ))

while there is a unit clause {l} 2 � do

µ µ [{l}

for every clause C 2 � do

if l 2 C then � �� {C}

else if ¬l 2 C then � �� {C} [{C � {¬l}}

222/361

Davis and Putnam Procedure
Remarks

Remarks

• The variable section rule may be as simple as choosing the first
remaining variable in �

• It can select variables occurring in a clause of minimal length

• It can select variables occurring with a maximum number of
occurrences in minimum-size clauses

) eliminate clauses as early as possible in the search

223/361

Davis and Putnam Procedure
Example

224/361

• Consider the following propositional formula in CNF:

� = D ^ (¬D _ A _ ¬B) ^ (¬D _ ¬A _ ¬B) ^ (¬D _ ¬A _ B) ^ (D _ A)

D and (not D or not B) and (not D or not A or not B)
and (not D or not A or B) and (D or A) μ = { }

Unit Propagation

(A or not B) and (not A or not B) and (not A or B) μ = { D }

A not A

not B and B not B μ = { D, not A }μ = { D, A }

Unit Propagation

false false true μ = { D, not A, not B }

Variable Splitting

Stochastic Procedures

• Davis-Putman procedire works with partial assignments
• at each step, not all variables are assign a truth value
• at the initial step, µ is empty, then it is incrementally constructed by

adding assignments to variables

• A alternative idea is to devise algorithms that work from the
beginning on total assignments

• A trivial algorithms is the one that
1. Randomly selects an initial total assignments
2. Checks wether there is a model and if not
3. iteratively choose a different assignment until a model is found or all

assignments were tested

• This algorithm is sound and complete but not feasible in practice

• This algorithm can be used as basic idea for incomplete satisfiability
decision procedures

225/361

Local Search Procedure

Algorithm (Local-Search-SAT(�))

Select a total assignment µ for � randomly
while µ does not satisfy � do

if µ0 s.t. Cost (µ0,�) < Cost (µ,�) and |µ� µ0
| = 1 then

µ µ0

else

return Failure
end

end

Remarks

• The procedure is based on randomized local search

• The cost funnction compute the number of clauses of � that is
satisfy by µ

• The procedure is incomplete due to local minima

226/361

GSAT Algorithm

Algorithm (Basic-GSAT(�))

Select a total assignment µ for � randomly
while µ does not satisfy � do

foreach P 2 �, µp Flip (P, µ) do

µ argminµp
Cost(µp ,�)

end

end

return µ

Remarks

• The choice of the assignment mechanism helps avoid local minima

• Real implementation of GSAT restart from a new initial assignment
when the procedure fails

• The procedure is incomplete

227/361

Iterative Repair Approach

• The idea is to iteratively modify a truth assignment such that it
satisfies one of the unsatisfied clauses selected according to some
criterion

• A unsatisfied clause is seen as a "fault" to be "repair"

• This method differ from previous ones in that at every step the
number of clause unsatisfied may increase

Algorithm (Iterative-Repair(�))

Select any µ

while µ does not satisfy � do

if iteration limit exceeded then return Failure
Select any clause C 2 � not satisfied by µ

Modify µ to satisfy C

end

return µ

228/361

Iterative Repair Approach
Random-Walk

• A well-known version of Iterative-Repair procedure is Random-Walk
• Random-Walk implements the step "Modify µ to satisfy C" in a way

that ressembles to GSAT
• By flipping iteratively one variable in C

• It has been shown that Random-Walk suffers several problems on
formulas of a certain complexity

• A probabilistic greedy version of Random-Walk has been proposed,
called Walksat

• After C is selected randomly, Walksat selects randomly the varaible
to flipped among the following possibilities to mix non greedy and
greedy search:

1. a random variable in C or
2. the variable C that lead to the greatest number of satisfied clauses

when flipped

229/361

Different Encodings

Different Encodings

• The encoding presented previously is one encoding

• Since the SAT search procedure takes time exponential in the
number of variables, the choice of encoding is critical

230/361

Action Representation

• The encoding presented previously, each action is represented by a
different logical variable at each step

• This results in |A| = n|O||D|
A
0 propositional variables to encode

actions with
• n the number of steps
• O the number of operators
• D the number of constant in the domain and
• A0 the maximum arity of operators

231/361

Action Representation
Simple Operator Splitting

• The idea is to replace each n-ay action proposition with n unary
propositions

• For instance, a proposition variable move(r1,l1,l2,i) is replaced by

move(r1,i) ^ move(l1,i) ^ move(l2,i)

• The advantage is that each operator share the same variable

• Simple operator splitting results in |A| = n|O||D|A0

232/361

Action Representation
Overloaded Operator Splitting

• Thus generalize the idea if simple operator splitting by allowing
different operator to share the same variable

• This done by representing the action, e.g., move, as the argument of
a general action predicate Act

• For instance, move(r1,l1,l2,i) is replaced by

Act(move, i) ^ Act1(r1,i) ^ Act2(l1,i) ^ Act3(l2,i)

• An action for instance fly(r1,l1,l2,i) can share variables Act1(r1,i),
Act2(l1,i) and Act3(l2,i) with move(r1,l1,l2,i)

• Overloaded operator splitting results in |A| = n()|O|+ |D|A0

233/361

Action Representation
Bitwise

• The idea is to provide m bits that encode each action
• For instance, if we have 4 actions:

• a1 = move(r1,l1,l2,i)
• a2 = move(r1,l2,l1,i)
• a3 = move(r2,l1,l2,i)
• a4 = move(r2,l2,l1,i)

• We can use just two bits : bit1(i) and bit2(i)

• The formula bit1(i) ^ bit2(i) can represent a1, bit1(i) ^ ¬bit2(i)
a2, etc.

• Bitwise representation results in reducing the number of variables to
dlog2|A|e

234/361

Frame Axiom
Classical Frame Axiom

• This is the most obvious formalization of the fact that actions
change only what is explicitly states

• For each action a, for each fluent f 62 effects(a), and for each
0  i  n � 1 we have:

fi ^ ai) fi+1

• Problem if ai does not occurs at step i , ai is false and the frame
axiom does not constraints the value of fi+1 which can therefore
takes an arbitrary value

235/361

Frame Axiom
Classical Frame Axiom

• For instance; consider this classical frame axiom:

unloaded(r1,i) ^ move(r1,l1,l2,i)) unloaded(r1, i + 1)

• When the robot is move from l1 to l2 at step i the robot might be
loaded magically

• A solution is to add the at-least-one axioms, i.e., a disjunction of
every possible action at step i , that assures that least one action is
performed: _

a2A

ai

236/361

Frame Axiom
Explanatory Frame Axiom

• In our first encoding, Explanatory Frame Axiom was used to encode
that just one action occurs at a given step.

• Thus solution plan are totally ordered

• It could be interested to have concurrent plan

• Explanatory Frame Axiom can be relaxed by defining only
inconsistent actions

237/361

Size of the different encodings

Actions Number of variables

Regular n|F |+ n|O||D|
A
0

Simple Splitting n|F |+ n|O||D|A0

Overloaded Splitting n|F |+ n(|O|+ |D|A0)

Bitwise n|F |+ ndlog2|O||D|
A
0 e

• n the number of steps

• O the number of operators

• D the number of constant in the domain and

• A0 the maximum arity of operators

• |F | is the number of fluents with |F | = |P ||D|
A
p with |P | the number

of predicate and Ap the maximum arity of predicates

238/361

Size of the different encodings

Actions Frame axiom Number of variables

Regular Classical O(n|F ||A|)

Regular Explanatory O(n|F ||A|+ n|A|
2)

Simple Splitting Classical O(n|F ||A|A0 + n|A|A
|A|
0)

Simple Splitting Explanatory O(n|F |A|A|
0 + n(|A|A0)2)

Overloaded Splitting Classical O(n|F ||A|A0) + n(|A|A0)|A|)

Overloaded Splitting Explanatory O(n|F |(|A|A0)2 + n(|F ||A|A0)|A|)

Bitwise Classical O(n|F ||A|log2|A|)

Bitwise Explanatory O(n|F ||A|(log2|A|)|A|)

• |A| = |O||D|
A0 is the number of actions of the problem

239/361

To go further

Exercices

Exercice 1
Are the following formulas satisfied ?

(¬D _ A _ ¬B) ^ (¬D _ ¬A _ ¬B) ^ (¬D _ ¬A _ B) ^ (D _ A)

(D ! (A! ¬B)) ^ (D _ (¬A! ¬B)) ^ (¬D _ ¬A _ B) ^ (D A)

Run the Davis-Putnam procedure on them and explain the result. Also
run a stochastic procedure.

240/361

To go further

Further readings

H. Kautz, B. Selman
Planning as Satisfiability.
ECAI 1992: 359-363
J. Rintanen
Planning and SAT.
Handbook of Satisfiability 2021: 765-789

241/361

