
Part VII

Constraints Satisfaction
Techniques

242/361

Introduction

• Constraint satisfaction is a general and powerful problem-solving
paradigm that is applicable to a broad set of aeras, e.g.,

• planning and scheduling
• computer vision
• patter recognition
• etc.

• A constraint satisfaction problem (CSP) takes as input:
1. A set of variables and their respective domains
2. a set of constraints on the compatible values that variables may take

• The objective is to find a value for each variable within its domaines
such that these values meet all the constraints

243/361

CSP and Planning

• CSP can be use in planning in two different ways:
1. Directly, by stating a planning problem as a CSP.

• It is possible to follow an approach similar to that of SAT, i.e., to
encode a planning problem into a CSP and to rely entirely on CSP
tools for planning

2. Indirectly, by using CSP techniques within approaches specific to
planning

• The latter approach is more frequent

244/361

Constraint Satisfaction
Problems

Constraint Satisfaction Problems

• A CSP over a finite domains is defined to be a triple P = (X ,D, C)
where:

• X = {x1, . . . , xn} is a finite set of n variables
• D = {D1, . . . ,Dn} is the set of finite domains of the variables,

xi 2 Di

• C = {c1, . . . , cm} is a finit set of constraints. A constraint cj of some
arity k restricts the possibles values of a subset of k variables
{xj1, . . . , xjk} ✓ X . cj is defined as a subset of the cartesian product:
cj ✓ Dj1 ⇥ . . .⇥ Djk , i.e., as the set of tuples of values allowed by
this constraint for its variables :
{(vj1, . . . , vjk) 2 Dj1 ⇥ . . .⇥ Djk | (vj1, . . . , vjk) 2 cj}.

245/361

Solution to a CSP

• A solution to a CSP (X ,D, C) is a n-tuple � = (v1, . . . , vn) such
that vi 2 Di and the values of the varaibles xi = vi , for 1  i  n,
meet all the constraints in C. A CSP is consistant if such a solution
� exists.

• A tuple � is a solution iff for every constraints cj 2 C, the values
specified in � for the variables xj1, . . . , xjk of cj correspond to a tuple
(vj1, . . . , vjk) 2 cj

246/361

Constraints in a CSP

• Constraints in a CSP can be:
1. Explicite: A explicite constraint lists the set of its allowed tuples or

the complementary set of forbidden tuples, e.g., xi = vi

2. Implicite: A implicite constraint use one or more relation symbols,
e.g., xi 6= xjk

• There are two specific constraints:
1. Universal which is satisfied by every tuple of values of its variables.

In other words there is no constraint between its variables.
2. Empty which forbids all tuples and cannot be satisfied

247/361

Binary CSP

• Many popular combinatorial problems can be expressed as binary
CSP

• A binary CSP is a CSP where all it constraints are binary relation

• A binary CSP can be represented as a constraint network, i.e., a
graph in which each node is a CSP variable xi labeled by its domain
dDi , and each edge (xi , xj) is labeled by the corresponding constraint
on xi and xj

• A binary CSP is symmetrical if for every constraints cij 2 C, the
symmetrical relation c

0
ij
2 C

• A unary constraint ci on a variable xi is simply subset of Di , thus,
one can replace Di with ci and remove this unary constraint

248/361

Binary CSP Example

X 4

X 5 X 2X 1

X 3

C45 = {(α
, β); (α

,ϒ);
(β,ϒ);

(ϒ,α
)} C24 = {(α, ϒ); (β,α); (ϒ,α); (ϒ,ϒ)}

C14 = {(α, α); (α,ϒ); (β, α); (ϒ,β)}

C12 = {(α, β); (α,ϒ); (β, β); (β,ϒ)} C15 = {(α, α); (α,β); (β, ϒ); (ϒ,α)}

C13 = {(α, β); (β, ϒ); (ϒ,α)}

C23 = {(α
, β); (β

,β);
(ϒ,β

); (ϒ
,ϒ)} C35 = {(α, ϒ); (β,α); (β,β); (ϒ,ϒ)}

• A solution but not the only one to this CSP is the tuple (↵, �,�, �,↵) which
satisfies all eight constraints:

(↵, �) 2 c12 (↵,�) 2 c13 (↵, �) 2 c14 (↵,↵) 2 c15

(�,�) 2 c23 (�, �) 2 c24 (�,↵) 2 c35 (�,↵) 2 c5

• The other possible solutions are: (↵,�,�,↵,�), (↵, �,�,↵,�) and (�, �, �,↵, �)

249/361

CSP Properties (1/3)

• Two CSPs P and P
00 on the same set of variables X are equivalent

if they have the same set of solutions
• A value v in a domain Di is redundant if it does not appear in any

solution
• For instance, � is redundant in D1 and ↵ redundant in D2

• A tuple in a constraint cj is redundant if it is not an element of any
solution

• For instance, pair (�,�) in c12 is redundant and (↵, �) in c13

• If all values a domain of if all tuples in a constraint are redundant,
then the CSP problem is not consistant

250/361

CSP Properties (2/3)

• A CSP is minimal if it has no redundant values in the domains of D
and no redundant tuples in the constraints of C

• A set of constraints C is consistent with a constraint c iff the
following holds: when (X ,D, C) is consistent, then (X ,D, C [{c})
is also consistent

• For instance, the constraint c25 = {(↵,↵), (�,�), (�, �)} is
consistent with our CSP. It leaves the tuples (↵,�,�,↵,�) and
(�, �, �,↵, �) as solutions to (X ,D, C [{c25})

251/361

CSP Properties (3/3)

• A set of constraints C entails a constraint c , denoted C |= c , iff the
CSP (X ,D, C) is equivalent to (X ,D, C [{c}), i.e., have the same
set of solutions.

• For instance, the constraint c25 = {(↵,↵), (�,�), (�, �)} is not
entails by C because it reduces the set of solution: the two tuples
(↵, �,�, �,↵) and (↵, �,�,↵,�) are not consistent with c25.

• A constraint c 2 C is redundant iff the CSP (X ,D, C) is equivalebt
to (X ,D, C � {c})

• For instance, the constraints c13 is redundant

252/361

CSP Properties and so what ...

• Given a CSP, one may be interested in addressing:
1. a resolution problem, i.e., finding a solution tuple
2. Checking CSP consistency, i.e., checking if a solution exists is

interested
3. Filtering some redundant values or some redundant tuples from

constraints is interested because the size of the problem
4. Working with minimal CSP by removing every redundant values and

tuples

• Problems:
1. Checking CSP consistency is NP-complete
2. Resolution and minimal reduction is NP-complete

• but ...
• Checking CSP consistency could be approximated in polynomial time
• Filtering is polynomial

253/361

Planning problem as CSPs

Planning problem as CSPs

• We will introduce a technique for encoding a bouded planning
problem P into a constraints satisfaction problem P

0

• This encoding as the following properties:
• Given P and a constant integer k, there is a one to one mapping

between the set of solution of P of length  k and the set of
solution of P 0

• From a solution of the CSP problem P
0, if any, the mapping provides

a solution plan to the planning problem P

• If P 0 has no solution, then there is no plan of length  k for the
problem P

• The encoding will not use classical representation but instead state
variable representation that is more convenient to compact encoding
into CSPs.

254/361

Reminders on State-Variable Representation (1/2)

255/361

• Recall that a state-variable representation for planning relies on the following
elements:

1. Constant symbols are partitioned into disjoint classes corresponding to the
objects of the domain, e.g., the classes of robots, locations, etc.

2. Object varaible symbols are typed varaibles: each ranges over a class or the
union of classes of constants, e.g., r 2 robots, l 2 location, etc.

3. State variable symbols are functions from the set if states and one or more
sets of constants into a set of constants:

rloc: robots⇥ S locations

rload: robots⇥ S container [{nil}

cpos: containers⇥ S locations [robots

4. Relation symbols are rigid relation one the constrants that do not vary form
state to state, e.g., adjacent(loc1,loc2), etc.

Reminders on State-Variable Representation (2/2)

• A planning operator is a triple:
o = (name(o), precond(o), effects(o)) where

• precond(o) is a set of expression that are condisions on stat-variables
and on rigid relations

• effects(o) is a set of assignments of values to state variables

• The statement of a bounded planning problem is
P = (O,R , s0; g , k) where O, s0 and g are as usual, R is the set of
rigid relations of the domain, and k is the length bound

256/361

State-Variable Representation Example

257/361

• Consider a simplified version of the DWR domain with no pile and no cranes
with three operators:

1. move(r , l ,m)

;; robot r at location l moves to an adjacent location m

precond: rloc(r) = l , adjacent(l ,m)

effects: rloc(r) m

2. load(c, r , l)

;; robot r load container c at location l

precond: rloc(r) = l , cpos(c) = l , rload(r) = nil

effects: rload(r) c, cpos(c) r

3. unload(c, r , l)

;; robot r unload container c at location l

precond: rloc(r) = l , rload(r) = c

effects: rload(r) nil, cpos(c) l

Encoding a Planning Problem into CSP

• A bound planning problem P = (O,R , s0, g , k) in the state-variable
representation is encoded into a CSP P

0 in 4 steps:
1. The definition of the CSP variables of P 0

2. The definition of the constraints of P 0 encoding the initial state s0

and the goal g
3. The encoding of the actions that are instances of operators in O

4. The encoding of the frame axioms

258/361

Step 1: CSP Variables

• The CSP variables of P 0 bounded by k are defined as follows:
• For each state variable xi of P ranging over Di and for each

0  j  k, there is a CSP varaible of P 0, xi (j , vu, . . . , vw) whose
domain is Di

• For each P  j  k � 1, ther eis a CSP varaibles of P 0, denoted
act(j), whose domain is the set of all possible actions in the domain,
in addition to a no-op action that has no preconditions and no
effects, i.e., 8s, �(s, noop) = s. More formally:

act: {0, ldots, k�} Dact

Dact = {a(vu, . . . , vw) ground instance of o 2 O} [{noop}

• Hence, the CSP variables are all the state variables of P , plus one
varaible act(j) whose value corresponds to the action carried out in
state j

259/361

Step 1: Example

260/361

• Let P = (O,R , s0, g) with
• 3 operators move, load and unload
• the constants: robot (r1), containers (c1, c2, c3) andlocations (l1, l2, l3)
• s0 = { rloc(r1) = l1, rload(r1) = nil,

cpos(c1) = l1, cpos(c2) = l2, cpos(c3) = l2}
• g = {cpos(c1) = l2, cpos(c2) = l1 }

• Assume we are looking for a plan of at most k = 4 step. The coressponding
CSP P

0 has the following set of variables:
• rloc(j ,r1) 2 {l1,l2,l3}, for 0  j  4
• rload(j ,r1) 2 {c1,c2,c3,nil}, for 0  j  4
• cpos(j ,c) 2 {l1,l2,l3,r1}, for c 2 {c1,c2,c3} and for 0  j  4
• act(j) 2 {move(r1,l1,l2), . . ., load(c1,r1,l1), . . ., unload(c1,r1,l1), . . .}, for

0  j  3

Step 2: Encoding of s0 and g as Constraints

• The encoding of the state s0 and the goal g into constraints follows
directly from the definition of the CSP variables.

• Every state variable xi whose value in s0 is vi is encoded into a unary
constraint of the corresponding CSP variable for j = 0 of the form:

(xi(0) = vi)

• Every state variable xi whose value is vi in the goal g is encoded
into a unary constraint of the corresponding CSP variable for j = k

(xi(k) = vi)

261/361

Step 2: Example

• The state s0 of our example is translated into the following
constraints:

rloc(0,r1) = l1, rload(0,r1) = nill, cpos(0,c1) = l1, cpos(0,c2) = l2,
cpos(0,c3) = l2

• The goal g is translated into the following constraints:

cpos(4,c1) = l2, cpos(4,c2) = l1

262/361

Step 3: Encoding Actions as Constraints

• Let a(vu, . . . , vw) be an actions such that the constants vu, . . . , vw ,
then 8j , 0  j  k � 1:

• Every condition of the form (xi = vi) in precond(a) is translated into
a constraint with a single tuple of the form:

(act(j) = a(vu, . . . , vw), xi (j) = vi)

• Every condition of the form (xi 2 D
0
i) in precond(a) is translated into

a constraint corresponding to the set of pairs:

{(act(j) = a(vu, . . . , vw), xi (j) = vi) | vi 2 D
0
i }

• Every assignment of the form (xi vi) in effects(a) is translated
into a constraint with a single tuple:

(act(j) = a(vu, . . . , vw), xi (j + 1) = vi)

263/361

Step 3: Example

264/361

• The move operator has only one condition and one effet

move(r , l ,m)

;; robot r at location l moves to an adjacent location m

precond: rloc(r) = l , adjacent(l ,m)

effects: rloc(r) m

• it is encoded into the following constraints:

{(act(j) = move(r , l ,m), rloc(j , r) = l) | adjacent(l ,m) ^ 0  j  3}

{(act(j) = move(r , l ,m), rloc(j + 1, r) = m) | adjacent(l ,m) ^ 0  j  3}

Step 3: Example

265/361

• The load operator has 3 conditions and two effets

load(c , r , l)

;; robot r load container c at location l

precond: rloc(r) = l , cpos(c) = l , rload(r) = nil

effects: rload(r) c , cpos(c) r

• it is encoded into the following constraints:

{(act(j) = load(c , r , l), rloc(j , r) = l) | 0  j  3}

{(act(j) = load(c , r , l), rload(j , r) = nil) | 0  j  3}

{(act(j) = load(c , r , l), cpos(j , c) = l) | 0  j  3}

{(act(j) = load(c , r , l), rload(j + 1, r) = c) | 0  j  3}

{(act(j) = load(c , r , l), cpos(j + 1, c) = r) | 0  j  3}

Step 4: Encoding Frame Axioms as Constraints

• A frame axiom constraint says that any state variable that is
invariant for an action

• A frame axiom is encoded into a ternary constraint involving 3 state
variable bu of in state j and j + 1

• More precisely for every action a(vu, . . . , vw) and every state variable
xi that is invariant for a, we have a constraint with the following set
of triples:

{(act(j) = a(vu, . . . , vw), xi (j) = vi , xi (j + 1 = vi) | vi 2 Di)}

• Note that every state variable is invariant for no-op action.

266/361

Step 4: Example

267/361

• Two state variables are invariant for the action move: rload and cpos

• The frame axioms for this operator are the following for 0  j  3:

{(act(j) = move(r , l ,m), rload(j , r) = v), rload(j + 1, r) = v) | v 2 Drload}

{(act(j) = move(r , l ,m), cpos(j , c) = v), rload(j + 1, r) = v) | v 2 Dcpos}

where
• Drload = {c1, c2, c3, nil}
• Dcpos = {l1, l2, l3, r1}

Plan extraction

• We have encoded a planning problem P and an integer k into a CSP
P

0

• Let assume that a CSP solver return a tuple � as a solution of P 0 or
failure if P 0 has no solutions

• The tuple � gives a value to every CSP variable in P
0, in particular

the action act(j)

• Let these values in � be: act(j) = aj+1, for 0  j  k � 1

• Each aj is an action of P and the sequence ⇡ = ha1, . . . , aki is a
valid plan of P that possiblt includes no-op action.

268/361

Analysis of the CSP encoding

269/361

• SAT and CSP encoding are very similar
• SAT encoding needs complete exclusion axioms, i.e., one action per step
• State encoding is simpler due to state-variable representation
• SAT encoding prevented can be considered for CSP encoding

• CSP encoding require m = k(n + 1)� 1 CSP variables where n is the
number of state and k the bound on the plan length

• Planning problem with a bound is psace- or nexptime-complete where as
CSP and SAT are np-complete

• This blowup results in the exponential number of boolean variable for SAT
• For CSP, the number of variables is linear in the size of the problem but the

total size of the CSP is exponential, i.e., d = ⇧i=m

i=1 |Di |, where Di is the
domain of the CSP variables xi

• CSP solver with ternary constraints are less efficient

CSP techniques and Algorithms

CSP techniques et Algorithms

• We will present mains algorithms to
1. solve CSP
2. filter its domains and constraints

270/361

Search Algorithms for CSPs

271/361

Algorithm (Backtrack(�,X))

if X = emptyset then return �

Select any variable xi 2 X

foreach vj 2 � do
Di Di \ {v 2 Di | (v , vi) 2 cij}

end
if Di = emptyset then return failure
nondeterministically choose vi 2 Di

Backtrack (�.(vi),X � {xi})

• This algorithme is sound and complete

• It runs in time O(nd) for d = maxi{|Di]}

• Practically, it performance depends on the heuristics used for ordering
the variables and the for choosing their values

Heuristics for CSP Search Algorithms

• Heuristics for variables ordering rely on the idea that a backtrack
done early in the search tree is less costly than a deep backtrack

• Thus, it is interested to chose the most constraint variable, i.e., the
variable xi with the smaller domain |Di

• Heuristics for the choice of values apply the opposite principle
preferring the least constraining value vi for a variable xi .

• This done by computing the number of paires in constraints cij in
which vi appears. The value vi chosen is the most frequent

272/361

Filtering Techniques

273/361

• Despite good heuristics, the resolution of a CSP remains in general a
costly combinatorial problem

• It is possible to test the consistency of CSP with fast algorithms that
provide a necessary but not sufficient condition of consistency

• These algorithms address the filtering problem introduce earlier, i.e.,
removing redundante values from domains or redundant tuples from
constraints

• Filtering techniques rely on a contraint propagation operation
• Propaging a constaint on a varaible x consits of computing its local

effects on varaibles adjacent to x in the constraint network, removing
redundant values and tuples

• This removal in turn lead to new constraints that need to be propagated
until a fixe-point is reached

Arc Consistency

• A straightforward filter, called arc consistency, consists of removing
from a domain Di any value that does not satisfy constraints cij

involving xi

• Such value is redundant because it necessary violates a constraint
• A naive algorithm for arc consistency is to perform an iteration over

all pairs of variables (xi , xj), i 6= j with the 2 following updates:
1. Di {v 2 Di | 9v 0 2 Dj : (v , v

0) 2 cij}
2. Dj {v 0 2 Dj | 9v 2 Di : (v , v

0) 2 cij}

• If after propagation a domain is empty, the CSP is said to be
inconsistent

• Otherwise the CSP is said to be arc-consistent or 2-consistent

• Note a Arc-consistent CSP is not necessary consistent

274/361

Arc Consistency Example

X 4

X 5 X 2X 1

X 3

C45 = {(α
, β); (α

,ϒ);
(β,ϒ);

(ϒ,α
)} C24 = {(α, ϒ); (β,α); (ϒ,α); (ϒ,ϒ)}

C14 = {(α, α); (α,ϒ); (β, α); (ϒ,β)}

C12 = {(α, β); (α,ϒ); (β, β); (β,ϒ)} C15 = {(α, α); (α,β); (β, ϒ); (ϒ,α)}

C13 = {(α, β); (β, ϒ); (ϒ,α)}

C23 = {(α
, β); (β

,β);
(ϒ,β

); (ϒ
,ϒ)} C35 = {(α, ϒ); (β,α); (β,β); (ϒ,ϒ)}

• Filtering the variable (x1, x2) reduces the domaines of D1 = {↵,�}

and D1 = {�, �} because no pair in c12 starts with a � or end with
an ↵

275/361

A better Arc Consistency Algorithm

Algorithm (AC3(L))

while L 6= ; do
Select any pairs (xi , xj) in L and remove it from L

D {v 2 Di | 9v
0
2 Dj : (v , v 0) 2 cij

if D 6= Di then
Din D

L L [{(xi , xk), (xk , xi) | 9cikorcki 2 C, k 6= k}

end
end

• AC3 keeps a list L of pairs of variables whose domains have to be
filtered

• AC3 runs in time O(md
2), where m = |C | and d = maxi{Di}

276/361

Path Consistency

• A more thorough filter is path consistency

• It consists of testing all triples of variables xi , xj and xk checking
they have values that meet the 3 constraints cij , cjk and cik

• A pair of values (vi , vj) can be part of a solution if it meets the
constraints cij and if a value vk j for xk such that (vi , vk) meets cik

and (vk , vj) meets ckj

• In other words, the two constrains cik and ckj entail by transitivity a
constraint on ci j

• Let us define a composition operation between constraints, denote •:

cik • ckj = {(v , v 0), v 2 Di , v
0
2 Dj |

9x 2 Dk : (v ,w) 2 cikand(w , v 0) 2 ckj}

277/361

Path Consistency Filtering Operation

• Let us define a composition operation between constraints, denote •:

cik • ckj = {(v , v 0), v 2 Di , v
0
2 Dj |

9x 2 Dk : (v ,w) 2 cikand(w , v 0) 2 ckj}

• The composition cik • ckj defines a constraint from xi to xj enrailed
by the 2 constraints cik and ckj .

• A pair (vi , vj) has met cij as well as the composition cik • ckj for
every k otherwise it is redundant

• The following filtering operation is:

cij cij \ [cik • ckj], 8k 6= i , j

278/361

Path Consistency Algorithm

Algorithm (PC(C))

repeat

foreach k : 1  k  n do

foreach pair i , j : 1  i  j  n, i 6= k, j 6= k do

cij cik \ [cik • ckj]

if cij = ; then return inconsistent
end

end

until until stabilization of all constraints in C

• A constraints network arc-consistence may not stay arc-consistent after a call to
PC

• It is possible to maintaining both with the filtering operation

cij cij \ [cik • ckk • ckj], for all triples including i = j

279/361

Local Search techniques and Hybrid Approaches

• Local search presented in the cours on SAT are applicable to CSP
solving

• We have to define a neighborhood method

• This approaches are not complet but may be very efficient

280/361

To go further

Further readings

R. Barták, M. Salido, F. Rossi:
New trends in constraint satisfaction, planning, and
scheduling: a survey.
Knowl. Eng. Rev. 25(3): 249-279 (2010)

R. Dechter
Constraint Processing
Morgan Kaufmann, 2003

281/361

