Introduction

Part VII

Constraints Satisfaction Techniques

- Constraint satisfaction is a general and powerful problem-solving paradigm that is applicable to a broad set of aeras, e.g.,
 - planning and scheduling
 - computer vision
 - patter recognition
 - etc.
- A constraint satisfaction problem (CSP) takes as input:
 - 1. A set of variables and their respective domains
 - ${\bf 2.}\;$ a set of constraints on the compatible values that variables may take
- The objective is to find a value for each variable within its domaines such that these values meet all the constraints

242/361 243/361

CSP and Planning

- CSP can be use in planning in two different ways:
 - ${\color{red} {\bf 1}}.$ Directly, by stating a planning problem as a CSP.
 - It is possible to follow an approach similar to that of SAT, i.e., to encode a planning problem into a CSP and to rely entirely on CSP tools for planning
 - 2. Indirectly, by using CSP techniques within approaches specific to planning
- The latter approach is more frequent

Constraint Satisfaction Problems

Constraint Satisfaction Problems

- A CSP over a finite domains is defined to be a triple $\mathcal{P}=(\mathcal{X},\mathcal{D},\mathcal{C})$ where:
 - $\mathcal{X} = \{x_1, \dots, x_n\}$ is a finite set of n variables
 - $\mathcal{D} = \{D_1, \dots, D_n\}$ is the set of finite domains of the variables, $x_i \in D_i$
 - $\mathcal{C} = \{c_1, \dots, c_m\}$ is a finit set of constraints. A constraint c_j of some arity k restricts the possibles values of a subset of k variables $\{x_{j1}, \dots, x_{jk}\} \subseteq \mathcal{X}.$ c_j is defined as a subset of the cartesian product: $c_j \subseteq D_{j1} \times \dots \times D_{jk}$, i.e., as the set of tuples of values allowed by this constraint for its variables :

 $\{(v_{j1},\ldots,v_{jk})\in D_{j1}\times\ldots\times D_{jk}\mid (v_{j1},\ldots,v_{jk})\in c_j\}.$

Solution to a CSP

- A solution to a CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is a n-tuple $\sigma = (v1, \dots, v_n)$ such that $vi \in D_i$ and the values of the varaibles $x_i = v_i$, for $1 \le i \le n$, meet all the constraints in \mathcal{C} . A CSP is consistant if such a solution σ exists
- A tuple σ is a solution iff for every constraints $c_j \in \mathcal{C}$, the values specified in σ for the variables x_{j1},\ldots,x_{jk} of c_j correspond to a tuple $(v_{j1},\ldots,v_{jk})\in c_j$

245/361 246/361

Constraints in a CSP

- Constraints in a CSP can be:
 - 1. Explicite: A explicite constraint lists the set of its allowed tuples or the complementary set of forbidden tuples, e.g., $x_i = v_i$
 - 2. Implicite: A implicite constraint use one or more relation symbols, e.g., $x_i \neq x_j k$
- There are two specific constraints:
 - Universal which is satisfied by every tuple of values of its variables.
 In other words there is no constraint between its variables.
 - 2. Empty which forbids all tuples and cannot be satisfied

Binary CSP

- Many popular combinatorial problems can be expressed as binary CSP
- \bullet A binary CSP is a CSP where all it constraints are binary relation
- A binary CSP can be represented as a constraint network, i.e., a graph in which each node is a CSP variable x_i labeled by its domain dD_i , and each edge (x_i, x_j) is labeled by the corresponding constraint on x_i and x_j
- A binary CSP is symmetrical if for every constraints $c_{ij} \in \mathcal{C}$, the symmetrical relation $c'_{ij} \in \mathcal{C}$
- A unary constraint c_i on a variable x_i is simply subset of D_i, thus, one can replace D_i with c_i and remove this unary constraint

247/361 248/361

Binary CSP Example

• A solution but not the only one to this CSP is the tuple $(\alpha,\gamma,\beta,\gamma,\alpha)$ which satisfies all eight constraints:

$$\begin{split} &(\alpha,\gamma) \in c_{12} \quad (\alpha,\beta) \in c_{13} \quad (\alpha,\gamma) \in c_{14} \quad (\alpha,\alpha) \in c_{15} \\ &(\gamma,\beta) \in c_{23} \quad (\gamma,\gamma) \in c_{24} \quad (\beta,\alpha) \in c_{35} \quad (\gamma,\alpha) \in c_{5} \end{split}$$

 $\bullet \ \ \text{The other possible solutions are: } (\alpha,\beta,\beta,\alpha,\beta) \text{, } (\alpha,\gamma,\beta,\alpha,\beta) \text{ and } (\beta,\gamma,\gamma,\alpha,\gamma) \\$

249/361

CSP Properties (1/3)

- ullet Two CSPs ${\mathcal P}$ and ${\mathcal P}''$ on the same set of variables ${\mathcal X}$ are equivalent if they have the same set of solutions
- A value v in a domain D_i is redundant if it does not appear in any solution
 - For instance, γ is redundant in D_1 and α redundant in D_2
- A tuple in a constraint c_j is redundant if it is not an element of any solution
 - For instance, pair (β, β) in c_{12} is redundant and (α, γ) in c_{13}
- If all values a domain of if all tuples in a constraint are redundant, then the CSP problem is not consistant

250/361

CSP Properties (2/3)

- A CSP is minimal if it has no redundant values in the domains of $\mathcal D$ and no redundant tuples in the constraints of $\mathcal C$
- A set of constraints $\mathcal C$ is consistent with a constraint c iff the following holds: when $(\mathcal X, \mathcal D, \mathcal C)$ is consistent, then $(\mathcal X, \mathcal D, \mathcal C \cup \{c\})$ is also consistent
 - For instance, the constraint $c_{25} = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma)\}$ is consistent with our CSP. It leaves the tuples $(\alpha, \beta, \beta, \alpha, \beta)$ and $(\beta, \gamma, \gamma, \alpha, \gamma)$ as solutions to $(\mathcal{X}, \mathcal{D}, \mathcal{C} \cup \{c_{25}\})$

CSP Properties (3/3)

- A set of constraints $\mathcal C$ entails a constraint c, denoted $\mathcal C \models c$, iff the CSP $(\mathcal X, \mathcal D, \mathcal C)$ is equivalent to $(\mathcal X, \mathcal D, \mathcal C \cup \{c\})$, i.e., have the same set of solutions.
 - For instance, the constraint $c_2 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma)\}$ is not entails by $\mathcal C$ because it reduces the set of solution: the two tuples $(\alpha, \gamma, \beta, \gamma, \alpha)$ and $(\alpha, \gamma, \beta, \alpha, \beta)$ are not consistent with $c_2 = 0$.
- A constraint $c \in C$ is redundant iff the CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ is equivalebt to $(\mathcal{X}, \mathcal{D}, \mathcal{C} \{c\})$
 - \bullet For instance, the constraints $\emph{c}_{1}3$ is redundant

251/361 252/361

CSP Properties and so what ...

- Given a CSP, one may be interested in addressing:
 - 1. a resolution problem, i.e., finding a solution tuple
 - 2. Checking CSP consistency, i.e., checking if a solution exists is interested
 - Filtering some redundant values or some redundant tuples from constraints is interested because the size of the problem
 - 4. Working with minimal CSP by removing every redundant values and tuples
- Problems:
 - 1. Checking CSP consistency is NP-complete
 - 2. Resolution and minimal reduction is NP-complete
- but
 - Checking CSP consistency could be approximated in polynomial time
 - Filtering is polynomial

253/361

Planning problem as CSPs

- ullet We will introduce a technique for encoding a bouded planning problem P into a constraints satisfaction problem P'
- This encoding as the following properties:
 - Given P and a constant integer k, there is a one to one mapping between the set of solution of P of length $\leq k$ and the set of solution of P'
 - \bullet From a solution of the CSP problem P', if any, the mapping provides a solution plan to the planning problem P
 - If P' has no solution, then there is no plan of length $\leq k$ for the problem P
- The encoding will not use classical representation but instead state variable representation that is more convenient to compact encoding into CSPs.

Planning problem as CSPs

Reminders on State-Variable Representation (1/2)

- Recall that a state-variable representation for planning relies on the following elements:
 - Constant symbols are partitioned into disjoint classes corresponding to the objects of the domain, e.g., the classes of robots, locations, etc.
 - Object varaible symbols are typed varaibles: each ranges over a class or the union of classes of constants, e.g., r ∈ robots, I ∈ location, etc.
 - 3. State variable symbols are functions from the set if states and one or more sets of constants into a set of constants:

rloc: robots \times $S \leftarrow$ locations rload: robots \times $S \leftarrow$ container \cup {nil} cpos: containers \times $S \leftarrow$ locations \cup robots

4. Relation symbols are rigid relation one the constrants that do not vary form state to state, e.g., adjacent(loc1,loc2), etc.

254/361 255/361

Reminders on State-Variable Representation (2/2)

- A planning operator is a triple:
 - o = (name(o), precond(o), effects(o)) where
 - precond(o) is a set of expression that are condisions on stat-variables and on rigid relations
 - \bullet effects(o) is a set of assignments of values to state variables
- The statement of a bounded planning problem is $P = (O, R, s_0; g, k)$ where O, s_0 and g are as usual, R is the set of rigid relations of the domain, and k is the length bound

256/361

State-Variable Representation Example

- Consider a simplified version of the DWR domain with no pile and no cranes with three operators:
 - move(r, l, m)
 ;; robot r at location l moves to an adjacent location m precond: rloc(r) = l, adjacent(l, m)
 effects: rloc(r) ← m
 - 2. load(c, r, l)
 - ;; robot r load container c at location l precond: rloc(r) = l, cpos(c) = l, rload(r) = nil effects: $rload(r) \leftarrow c$, $cpos(c) \leftarrow r$
 - 3. unload(c, r, l)
 - ;; robot r unload container c at location I precond: $\operatorname{rloc}(r) = I, \operatorname{rload}(r) = c$ effects: $\operatorname{rload}(r) \leftarrow \operatorname{nil}, \operatorname{cpos}(c) \leftarrow I$

257/361

Encoding a Planning Problem into CSP

- A bound planning problem $P = (O, R, s_0, g, k)$ in the state-variable representation is encoded into a CSP P' in 4 steps:
 - 1. The definition of the CSP variables of P^\prime
 - 2. The definition of the constraints of P^\prime encoding the initial state s_0 and the goal g
 - 3. The encoding of the actions that are instances of operators in ${\it O}$
 - 4. The encoding of the frame axioms

Step 1: CSP Variables

- ullet The CSP variables of P' bounded by k are defined as follows:
 - For each state variable x_i of P ranging over D_i and for each $0 \le j \le k$, there is a CSP variable of P', $x_i(j, v_u, \dots, v_w)$ whose domain is D_i
 - For each $P \leq j \leq k-1$, ther eis a CSP varaibles of P', denoted act(j), whose domain is the set of all possible actions in the domain, in addition to a no-op action that has no preconditions and no effects, i.e., $\forall s, \gamma(s, noop) = s$. More formally:

```
\begin{aligned} & \mathsf{act:}\ \{0, \mathit{Idots}, k-\} \leftarrow D_{\mathit{act}} \\ & D_{\mathit{act}} = \{\mathit{a}(v_{\mathit{u}}, \ldots, v_{\mathit{w}}) \ \mathsf{ground} \ \mathsf{instance} \ \mathsf{of} \ \mathit{o} \in \mathit{O}\} \cup \{\mathsf{noop}\} \end{aligned}
```

 Hence, the CSP variables are all the state variables of P, plus one variable act(j) whose value corresponds to the action carried out in state j

258/361 259/361

Step 1: Example

- Let $P = (O, R, s_0, g)$ with
 - 3 operators move, load and unload
 - the constants: robot (r1), containers (c1, c2, c3) andlocations (l1, l2, l3)
 - $s_0 = \{ \text{rloc}(r1) = l1, \text{rload}(r1) = \text{nil}, \\ \text{cpos}(c1) = l1, \text{cpos}(c2) = l2, \text{cpos}(c3) = l2 \}$
 - $g = \{cpos(c1) = l2, cpos(c2) = l1 \}$
- Assume we are looking for a plan of at most k=4 step. The coressponding CSP P' has the following set of variables:
 - $rloc(j,r1) \in \{l1,l2,l3\}, \text{ for } 0 \le j \le 4$
 - $\mathsf{rload}(j,\mathsf{r1}) \in \{\mathsf{c1},\mathsf{c2},\mathsf{c3},\mathsf{nil}\}, \text{ for } 0 \leq j \leq 4$
 - $cpos(j,c) \in \{l1,l2,l3,r1\}$, for $c \in \{c1,c2,c3\}$ and for $0 \le j \le 4$
 - $\mathsf{act}(j) \in \{\mathsf{move}(\mathsf{r1}, |1, |2), \ \dots, \ \mathsf{load}(\mathsf{c1}, \mathsf{r1}, |1), \ \dots, \ \mathsf{unload}(\mathsf{c1}, \mathsf{r1}, |1), \ \dots\}, \ \mathsf{for} \ 0 \leq j \leq 3$

Step 2: Encoding of s_0 and g as Constraints

- The encoding of the state s₀ and the goal g into constraints follows directly from the definition of the CSP variables.
- Every state variable x_i whose value in s₀ is v_i is encoded into a unary constraint of the corresponding CSP variable for j = 0 of the form:

$$(xi(0)=v_i)$$

• Every state variable x_i whose value is v_i in the goal g is encoded into a unary constraint of the corresponding CSP variable for j=k

$$(xi(k) = v_i)$$

261/361

Step 2: Example

 The state s₀ of our example is translated into the following constraints:

$$rloc(0,r1) = l1$$
, $rload(0,r1) = nill$, $cpos(0,c1) = l1$, $cpos(0,c2) = l2$, $cpos(0,c3) = l2$

 \bullet The goal g is translated into the following constraints:

$$cpos(4,c1) = 12, cpos(4,c2) = 11$$

Step 3: Encoding Actions as Constraints

- Let $a(vu,\dots,v_w)$ be an actions such that the constants v_u,\dots,v_w , then $\forall j,0\leq j\leq k-1$:
 - Every condition of the form $(x_i = v_i)$ in precond(a) is translated into a constraint with a single tuple of the form:

$$(\mathsf{act}(j) = \mathit{a}(\mathit{v}_{\mathit{u}}, \ldots, \mathit{v}_{\mathit{w}}), \mathit{x}_{\mathit{i}}(j) = \mathit{v}_{\mathit{i}})$$

• Every condition of the form $(x_i \in D_i')$ in precond(a) is translated into a constraint corresponding to the set of pairs:

$$\{(\mathsf{act}(j) = \mathsf{a}(v_u, \dots, v_w), x_i(j) = v_i) \mid v_i \in D_i'\}$$

 Every assignment of the form (x_i ← v_i) in effects(a) is translated into a constraint with a single tuple:

$$(\operatorname{act}(j) = a(v_u, \dots, v_w), x_i(j+1) = v_i)$$

262/361 263/361

Step 3: Example

• The move operator has only one condition and one effet

```
move(r, l, m)

;; robot\ r at location\ l moves to an adjacent location\ m

precond: rloc(r) = l, adjacent(l, m)

effects: rloc(r) \leftarrow m
```

• it is encoded into the following constraints:

```
 \{(\mathsf{act}(j) = \mathsf{move}(r, l, m), \mathsf{rloc}(j, r) = l) \mid \mathsf{adjacent}(l, m) \land 0 \le j \le 3\}   \{(\mathsf{act}(j) = \mathsf{move}(r, l, m), \mathsf{rloc}(j + 1, r) = m) \mid \mathsf{adjacent}(l, m) \land 0 \le j \le 3\}
```

264/361

Step 3: Example

• The load operator has 3 conditions and two effets

```
\begin{aligned} & \mathsf{load}(c,r,l) \\ & \text{;; robot } r \ \textit{load container } c \ \textit{at location } l \\ & \mathsf{precond: rloc}(r) = l, \mathsf{cpos}(c) = l, \mathsf{rload}(r) = \mathsf{nil} \\ & \mathsf{effects: rload}(r) \leftarrow c, \mathsf{cpos}(c) \leftarrow r \end{aligned}
```

• it is encoded into the following constraints:

```
\begin{split} & \{(\mathsf{act}(j) = \mathsf{load}(c,r,l), \mathsf{rloc}(j,r) = l) \mid 0 \le j \le 3\} \\ & \{(\mathsf{act}(j) = \mathsf{load}(c,r,l), \mathsf{rload}(j,r) = \mathsf{nil}) \mid 0 \le j \le 3\} \\ & \{(\mathsf{act}(j) = \mathsf{load}(c,r,l), \mathsf{cpos}(j,c) = l) \mid 0 \le j \le 3\} \\ & \{(\mathsf{act}(j) = \mathsf{load}(c,r,l), \mathsf{rload}(j+1,r) = c) \mid 0 \le j \le 3\} \\ & \{(\mathsf{act}(j) = \mathsf{load}(c,r,l), \mathsf{cpos}(j+1,c) = r) \mid 0 \le j \le 3\} \end{split}
```

265/361

Step 4: Encoding Frame Axioms as Constraints

- A frame axiom constraint says that any state variable that is invariant for an action
- A frame axiom is encoded into a ternary constraint involving 3 state variable bu of in state j and j+1
- More precisely for every action $a(v_u, \ldots, v_w)$ and every state variable x_i that is invariant for a, we have a constraint with the following set of triple:

$$\{(\mathsf{act}(j) = \mathit{a}(v_u, \dots, v_w), x_i(j) = v_i, x_i(j+1=v_i) \mid v_i \in D_i)\}$$

• Note that every state variable is invariant for no-op action.

Step 4: Example

- Two state variables are invariant for the action move: rload and cpos
- The frame axioms for this operator are the following for $0 \le j \le 3$:

$$\begin{aligned} & \{(\mathsf{act}(j) = \mathsf{move}(r, l, m), \mathsf{rload}(j, r) = v), \mathsf{rload}(j + 1, r) = v) \mid v \in D_{\mathit{rload}}\} \\ & \{(\mathsf{act}(j) = \mathsf{move}(r, l, m), \mathsf{cpos}(j, c) = v), \mathsf{rload}(j + 1, r) = v) \mid v \in D_{\mathit{cpos}}\} \end{aligned}$$

where

- $D_{rload} = \{c1, c2, c3, nil\}$
- $D_{cpos} = \{l1, l2, l3, r1\}$

266/361 267/361

Plan extraction

- Let assume that a CSP solver return a tuple σ as a solution of P' or failure if P' has no solutions
- The tuple σ gives a value to every CSP variable in P', in particular the action $\operatorname{act}(j)$
- Let these values in σ be: $act(j) = a_{j+1}$, for $0 \le j \le k-1$
- Each a_j is an action of P and the sequence $\pi = \langle a_1, \dots, a_k \rangle$ is a valid plan of P that possiblt includes no-op action.

Analysis of the CSP encoding

- SAT and CSP encoding are very similar
 - SAT encoding needs complete exclusion axioms, i.e., one action per step
 - State encoding is simpler due to state-variable representation
 - SAT encoding prevented can be considered for CSP encoding
- CSP encoding require m = k(n+1) 1 CSP variables where n is the number of state and k the bound on the plan length
- Planning problem with a bound is psace- or nexptime-complete where as CSP and SAT are np-complete
 - This blowup results in the exponential number of boolean variable for SAT
 - For CSP, the number of variables is linear in the size of the problem but the total size of the CSP is exponential, i.e., $d = \prod_{i=1}^{i=m} |D_i|$, where D_i is the domain of the CSP variables x_i
- CSP solver with ternary constraints are less efficient

268/361 269/361

CSP techniques et Algorithms

CSP techniques and Algorithms

- We will present mains algorithms to
 - 1. solve CSP
 - 2. filter its domains and constraints

Search Algorithms for CSPs

Algorithm (Backtrack (σ, \mathcal{X}))

$$\begin{split} & \text{if } \mathcal{X} = \textit{emptyset then return } \sigma \\ & \textit{Select any variable } x_i \in \mathcal{X} \\ & \text{foreach } v_j \in \sigma \text{ do} \\ & \mid D_i \leftarrow D_i \cap \{v \in D_i \mid (v,v_i) \in c_{ij}\} \\ & \text{end} \end{split}$$

if $D_i = emptyset$ then return failure nondeterministically choose $v_i \in D_i$ Backtrack $(\sigma.(vi), \mathcal{X} - \{xi\})$

- This algorithme is sound and complete
- It runs in time $O(n^d)$ for $d = max_i\{|D_i]\}$
- Practically, it performance depends on the heuristics used for ordering the variables and the for choosing their values

Heuristics for CSP Search Algorithms

- Heuristics for variables ordering rely on the idea that a backtrack done early in the search tree is less costly than a deep backtrack
 - Thus, it is interested to chose the most constraint variable, i.e., the variable x_i with the smaller domain $|D_i|$
- Heuristics for the choice of values apply the opposite principle preferring the least constraining value v_i for a variable x_i.
 - This done by computing the number of paires in constraints c_{ij} in which v_i appears. The value v_i chosen is the most frequent

272/361

Filtering Techniques

- Despite good heuristics, the resolution of a CSP remains in general a costly combinatorial problem
- It is possible to test the consistency of CSP with fast algorithms that provide a necessary but not sufficient condition of consistency
- These algorithms address the filtering problem introduce earlier, i.e., removing redundante values from domains or redundant tuples from constraints
- Filtering techniques rely on a contraint propagation operation
 - Propaging a constaint on a varaible x consits of computing its local effects on varaibles adjacent to x in the constraint network, removing redundant values and tuples
 - This removal in turn lead to new constraints that need to be propagated until a fixe-point is reached

Arc Consistency

- A straightforward filter, called arc consistency, consists of removing from a domain D_i any value that does not satisfy constraints c_{ij} involving x_i
- Such value is redundant because it necessary violates a constraint
- A naive algorithm for arc consistency is to perform an iteration over all pairs of variables (x_i, x_j) , $i \neq j$ with the 2 following updates:
 - 1. $D_i \leftarrow \{v \in D_i \mid \exists v' \in D_j : (v, v') \in c_{ij}\}$ 2. $D_j \leftarrow \{v' \in D_j \mid \exists v \in D_i : (v, v') \in c_{ij}\}$
- If after propagation a domain is empty, the CSP is said to be inconsistent
- Otherwise the CSP is said to be arc-consistent or 2-consistent
- Note a Arc-consistent CSP is not necessary consistent

273/361 274/361

Arc Consistency Example

• Filtering the variable (x_1,x_2) reduces the domaines of $D_1=\{\alpha,\beta\}$ and $D_1=\{\beta,\gamma\}$ because no pair in c_{12} starts with a γ or end with an α

A better Arc Consistency Algorithm

```
Algorithm (AC3(L))

while L \neq \emptyset do

| Select any pairs (x_i, x_j) in L and remove it from L
| D \leftarrow \{v \in D_i \mid \exists v' \in D_j : (v, v') \in c_{ij} \}
| if D \neq D_i then
| D_i n \leftarrow D
| L \leftarrow L \cup \{(x_i, x_k), (x_k, x_i) \mid \exists c_{ik} or c_{ki} \in \mathcal{C}, k \neq k\}
| end
end
```

- AC3 keeps a list L of pairs of variables whose domains have to be filtered
- AC3 runs in time $O(md^2)$, where m = |C| and $d = max_i\{D_i\}$

275/361 276/361

Path Consistency

- A more thorough filter is path consistency
- It consists of testing all triples of variables x_i , x_j and x_k checking they have values that meet the 3 constraints c_{ij} , c_{jk} and c_{ik}
- A pair of values (v_i, v_j) can be part of a solution if it meets the
 constraints c_{ij} and if a value v_kj for x_k such that (v_i, v_k) meets c_{ik}
 and (v_k, v_j) meets c_{kj}
- In other words, the two constrains c_{ik} and c_{kj} entail by transitivity a constraint on c_{ij}
- Let us define a composition operation between constraints, denote •:

$$c_{ik} \bullet c_{kj} = \{(v, v'), v \in D_i, v' \in D_j |$$

$$\exists x \in D_k : (v, w) \in c_{ik} \text{ and } (w, v') \in c_{kj} \}$$

Path Consistency Filtering Operation

• Let us define a composition operation between constraints, denote •:

$$c_{ik} \bullet c_{kj} = \{(v, v'), v \in D_i, v' \in D_j |$$

$$\exists x \in D_k : (v, w) \in c_{ik} and(w, v') \in c_{kj}\}$$

- The composition c_{ik} c_{kj} defines a constraint from x_i to x_j enrailed by the 2 constraints c_{ik} and c_{kj} .
- A pair (v_i, v_j) has met c_{ij} as well as the composition c_{ik} c_{kj} for every k otherwise it is redundant
- The following filtering operation is:

$$c_{ij} \leftarrow c_{ij} \cap [c_{ik} \bullet c_{kj}], \forall k \neq i, j$$

277/361 278/361

Path Consistency Algorithm

Algorithm (PC(C)) foreach $k:1 \le k \le n$ do foreach pair $i,j:1 \le i \le j \le n, i \ne k, j \ne k$ do $c_{ij} \leftarrow c_{ik} \cap [c_{ik} \bullet c_{kj}]$ if $c_{ij} = \emptyset$ then return inconsistent end end $\textbf{until} \ \textit{until stabilization of all constraints in } \mathcal{C}$

- A constraints network arc-consistence may not stay arc-consistent after a call to
- It is possible to maintaining both with the filtering operation

```
c_{ij} \leftarrow c_{ij} \cap [c_{ik} \bullet c_{kk} \bullet c_{kj}], \text{for all triples including } i = j
```

Local Search techniques and Hybrid Approaches

- \bullet Local search presented in the cours on SAT are applicable to CSP
- We have to define a neighborhood method
- This approaches are not complet but may be very efficient

279/361 280/361

Further readings

R. Barták, M. Salido, F. Rossi:

New trends in constraint satisfaction, planning, and scheduling: a survey.

Knowl. Eng. Rev. 25(3): 249-279 (2010)

R. Dechter

Constraint Processing

Morgan Kaufmann, 2003

To go further