
Part VIII

Heuristics in Planning

282/361

Introduction

• Why heuristics are interested for planning ?
• Although planning systems have become much more efficient, they

still suffer from combinatorial complexity. Even restrited planning
domains, the complexity can be intractable in the worst case

• Approach to study heuristics
• Define a nondeterministic abstract search procedure in a space in

which each node u, (i.e., structured collection of actions and
constraints) represents a set of solution ⇧u, (i.e., the set of all
solution reachable from u), For instance, u is

• in state-space planning, a simple sequence of actions
• in plan-space planning, a set of actions, causal links, orderig

constraints and bindings constraints
• in graph based planning, a subgraph of the planning graph
• etc.

283/361

Abstract Search Procedure (1/2)

• The abstract search procedure involves three main steps in addition
to a terminaison step:

1. A refinement step consists of modifying the collection of actions
and/or constraints associated with a node u. In a refinement of u,
the set of solution ⇧u remains u nchanged

• For instance, if we find out there is only one action a that meets a
constraint in u, a is maked an explicit part of u and the constraints is
removed

2. A branching setp generates on or more children of u. These nodes
will be the next candidates for the next node to visit

• For instance, in forward state-space seach, each child corresponds to
appending a different action to the end of a partial plan

3. A pruning step consists of removing from the set of candidates nodes
some nodes that appear to be unpromising for the search

• For instance, a node migth be considered to be unpromising if we
have a record of having already visited that node

284/361

Abstract Search Procedure (2/2)

Algorithm (Abstract-search(u))

if Terminal(u) then
return u

else
u  Refine(u)
B  Branch(u)
C  Prune(B)
if C = ; then

return Failure
else

nondeterministically choose any v 2 C

return Abstract-search(v)
end

end

285/361



Abstract Search Procedure for Plan-Space Planning

The different steps of the abstract search procedure for plan-space
planning are the following:

1. Branching consists of selecting flaws and finding its resolvers

2. Refinement consists of applying a resolver to the current partial
plan

3. Pruning : there is no pruning step

4. Terminaison occurs when no flaws are left in the partial plan

Note
Since paths in the plan space are likely to be infinite, a control strategy
such as best-first search or iterative deepening should be used

286/361

Abstract Search Procedure for State-Space Planning

The different steps of the abstract search procedure for state-space
planning are the following:

1. Branching are defined by actions

2. Refinement : there is no branching step

3. Pruning removes candidate nodes corresponding to cycle

4. Terminaison occurs when the plan goes all the way from the initial
state to a goal

Note
A control strategy such as A*, branch-and-bound search or iterative
deepening should be used

287/361

Abstract Search Procedure for Graph-Based Planning

The different steps of the abstract search procedure for graph-based
planning are the following:

1. Branching idendifies possible actions that achieve subgoals

2. Refinement consists of propaging constraints for actions chosen in
the branching step

3. Pruning uses the recorded nogood tuples of subgoals that failed in
some layer

4. Terminaison occurs if the solution-extraction process succeeds

Note
Graph-based planning correspond to using abstract search procedure
with iterative deepening control strategy.

288/361

Deterministic versus undeterministic search

289/361

• To implement a deterministic search
procedure a node selection function
(Select(C)) is needed to choose which
node u to visite next from a set of
candidates C

• Often the deterministic search is done in
a depth-first manner

)

Algorithm (Depth-first-search(u))

if Terminal(u) then return u

else

u  Refine(u)
B  Branch(u)
C  Prune(B)
while C = ; do

v  Select(C)
C  C � {v}

⇡  Depth-first-search(v)
if ⇡ 6= Failure then return ⇡

return Failure
end

end



Design Principle for Heuristics :
Relaxation

Node selection heuristic

Node selection heuristic
A node selection heuristic is any way of ranking a set of nodes in order of ther
relative desirability. We will model this heuristic as function h that can be used to
compute a numeric evaluation h(u) for each candidates node u 2 C , i.e.,

Select(C) = min{h(u) | u 2 C}

Notes
1. Node selection heuristics are used for resolving nondeterministic choices

2. If there is a deterministic technique for choosing at each point the rigth node,
this technique is not a heuristic

3. A node selection heuristic not always garantees to be the best choice but often
lead to the best solution

4. A node selection heuristic must be easy to compute

290/361

Relaxation Principle

Node selection heuristics are often based on relaxation priciple:

Relaxation Principle
In order to assess how desirable a node u is, one considers a simpler
problem that is obtained from the original one by making simplifying
assumptions and by relaxing constraints

• One estimates how desirable u is by using u to solve the simpler
relaxed problem and using that solution as an estimate of the
solution one would get if one used u to solve the original problem

• On the other hand, the more simplified the relaxed problem is, the
easier it will be to compute the heuristic

291/361

Admissible Node Selection Heuritic

Admissible Node Selection Heuristic
A node selection heuristic h is admissible if it is a lower bound estimate
cost of a minimal solution reachable from u, i.e., h(u)  h

⇤(u) with
h
⇤(u) the minimum cost of any solution reachable from u

• h
⇤(u) =1 if no solution is reachable from u

Notes

1. Admissible node selection heuristic is desirable if one seeks a optimal
solution with respect to some cost criterion, e.g., path-finding A⇤

2. Heuristic search as iterative-deepening scheme, are usually able to
garantee on optimal solution when guided with an admissible node
selection heuristic

292/361



Heuristics for State-Space
Planning

Reminder

• In state-space planning, each node u corresponds to a state s

• At some point the candicates nodes are the sucessor states of the
current state s, for the actions applicable to s. For each action a to
a state s:

• In forward search the next state is given by the transition function:

�(s, a) = (s � effects�(a)) [ effects+(a)

• In backward search the next state is given by the transition function:

�(s, a)�1 = (s � effects+(a)) [ precond(a)

Relaxation principle
In order to choose the most preferable candidate state, we need to
assess how close each action may bring us to the goal (forward search)
or initial state s0 (backward search).

293/361

A Simple Relaxation Heuristic (1/2)

• Simple relaxation heuristic idea
• A very simple relaxation heuristic is to neglect effects�(a)

• Consequences:
• �(s, a) involves on a monotonic increase in the number of

propositions of s
• It is easier to compute distance goal with such simplified �

Definition (Simple Relaxation Heuristic)
Let s 2 S be a state, p a proposition and g a set of propositions. The
minimum distance from s to g , denoted �⇤(s, g), is the minimum
number of actions required to reach from s a state containing all
proposition p 2 g .

294/361

A Simple Relaxation Heuristic (2/2)

• � is given by the following equations:

�(s, p) = 0 if p 2 s

�(s, p) =1 if 8a 2 A, p /2 effects+(a)

�(s, g) = 0 if g ✓ s

otherwise :

�(s, p) = mina{1 +�(s, precond(a)) | p 2 effects+(a)}

�(s, g) = ⌃p2g�(s, p)

Notes

1. These equations give the distance to g in the relaxed problem and

2. an estimate distance in the unrelaxed problem

3. The heuristic function can be define as h(s) = �(s, g)

295/361



The �-Algorithm

• The �-algorithm is polynomial in time

• As minimum distance graph searching, the algorithm stops when a fixed point is
reached

Algorithm (Delta(s))
foreach p do

if p 2 s then �(s, p) 0
else �(s, p) 1

U  {s}

end

repeat

foreach a such that 9u 2 U, precond(a) ✓ u do

U  {u} [ effects+(a)
foreach p 2 effects+(a) do

�(s, p) min{�(s, p), 1 + ⌃q2precond(a)�(s, q)}

end

end

until no change occurs in the above updates

296/361

Heuristics Guided Forward Search

Algorithm (Heuristic-forward-Search(⇡, s, g ,A))

if s satisfies g then return ⇡

options  {a 2 | a applicable to s}

foreach a 2 options do �(�(s, a))

while options 6= ; do
a min{�(�(s, a), g) | a 2 options }

options  options �{a}
⇡0
 Heuristic-forward-Search(⇡, a, �(s, a), g ,A)

if ⇡0
6= Failure then return ⇡0

end
return Failure

297/361

Heuristics Guided Backward Search

Algorithm (Heuristic-backward-Search(⇡, s0, g ,A))

if s0 satisfies g then return ⇡

options  {a 2 | a revelant for g}

while options 6= ; do

a min{�(s, ��1(g , a)) | a 2 options }

options  options �{a}
⇡0
 Heuristic-backward-Search(a · ⇡, s0, ��1(g , a),A)

if ⇡0
6= Failure then return ⇡0

end

return Failure

Notes
1. We suppose that �-algorithm is run once initially

2. The backward search is more efficient than forward search because it has to be
run less �-algorithm

298/361

Admissible State-Space Heuristics

• It can be desirable to use admissible heuristic function for two reasons:

1. It may be interested in getting the shortest plan, e.g., cost may be
associated to actions

2. Admissible permit a safe pruning
• If Y is the length of a plan and if h(u) < Y , h being admissible, then

we are sure that non solution plan of length smaller that Y can be
obtained from u.
) pruning does not affect completeness

Exercice
Is the simple heuristic h previouly introduced admissible ?
No, because �(s, g) is not a lower bound on the true minimal distance
�⇤(s, g). Assume a problem where there is an action a such that:

• precond(a) ✓ s0,

• effects+(a) = g and

• s0 \ g = ;.

The distance to the goal is 1, but �(s0, g) = ⌃p2g�(s0, p) = |g | 299/361



First Admissible heuristic

Idea
Instead of estimating the distance to a set of propositions g to be the sum of the
distances to the elements of g , we estimate it to be the maximum distance to its
propositions

• Now, �1 is given by the following equations:

�1(s, p) = 0 if p 2 s

�1(s, p) =1 if 8a 2 A, p /2 effects+(a)

�1(s, g) = 0 if g ✓ s

otherwise :

�1(s, p) = mina{1 +�1(s, precond(a)) | p 2 effects+(a)}

�1(s, g) = max{�1(s, p) | p 2 g}

• Experience shows that h1 is not as informative as h even if h1 is admissible

300/361

Second Admissible heuristic

Idea
Instead of considering that the distance to a set of propositions g is the
maximum distance to propositions p 2 g , we estimate it to be the
maximum distance to a pair of propositions {p, q}

• Now, �2 is given by the following recusive equations (terminaison
cases remain unchanged):

�2(s, p) = mina{1 +�2(s, precond(a)) | p 2 effects+(a)}

�2(s, {p, q}) = min{

mina{1 +�2(s, precond(a)) | {p, q} 2 effects+(a)}

mina{1 +�2(s, {q} [ precond(a)) | p 2 effects+(a)}

mina{1 +�2(s, {p} [ precond(a)) | q 2 effects+(a)}}

�2(s, g) = maxp,q{�2(s, {p, q}) | {p, q} ✓ g}

301/361

Reminder : Graphplan Algorithm

Algorithm (GraphPlan(A, s0, g))
i  0,r  ;,P0  s0
repeat

i  i + 1, G  Expand(G)
until [g ✓ Pi and g \ µPi = ;] or Fixedpoint(G)
if g 6✓ Pi or g \ µPi¬; then return Failure
⇧ Extract(G , g , i)
if Fixedpoint(G) then return ⌘  |r()|

else ⌘  0
while ⇧ = Failure do

i  i + 1, G  Expand(G), ⇧ Extract(G , g , i)
if ⇧ = Failure and Fixedpoint(G) then

if ⌘ = |r()| then return Failure
⌘  |r()|

end

end

return ⇧

302/361

Comments

• Graphplan looks like heuritic backward search procedure
• �-procedure and Expand procedure in graphplan perform a

reachability analysis
• The main difference :

• Expand builds a data stucture, the planning graph, which provides
more information attached to propositions not just distance to s0

• The planning graph approximate the distance �⇤(s0, g), that is the
level of the first layer of the graph that g ✓ Pi and no pair of g is in
µPi

• Graphplan can be viewed as a heuristic search planner that first
computes the distance estimates in a forward propagation manner
and then searches backward from the goal using a
iterative-deepening strategy augmented with a learning mechanisms
(nogoods hashtable)

303/361



Heuristics for Plan-Space
Planning

Reminder: PSP Procedure

Algorithm (PSP(⇡))

flaws  OpenGoals(⇡) [
Threat(⇡)

if flaws = ; then return ⇡

select any flaw sigma 2 flaws
resolvers  Resolve(�,⇡)
if resolvers = ; then return

Failure

nondeterministically choose a
resolver ⇢ 2 resolvers

⇡0
 Refine(⇢, ⇡)

return PSP(⇡0)

Resolve

Select a flaw

ad
d 

a 
ne

w
 p

ar
tia

l p
la

n

Select a resolver
Failure

Solution plan
no flaw

no resolver

Threats

Plan Space

Ordering

constraint

manager

Binding

constraint

manager

Open goals

Refine

initial plan

304/361

Reminder: Plan-Space

• Plan space can be viewed as AND/OR tree
• The flaw correspond to the AND branches

• each flaw must be resolved in order to find a solution plan
• The resolver correspond to the OR branches

• only one resolver is needed in order to a solution plan

Partial 

plan π2

Partial 

plan π4

Partial 

plan π6

Partial 

plan π3

Partial 

plan π5

Flaws

a1 a2 a3 a4

Partial 

plan π1

Partial plan π

... ... ... ... ... ...

a before b b before a

Resolvers

Unestablished 

precondition g1
Unestablished 

precondition g2
Action a threatens b's 

precondition p

305/361

Serialization tree example (1/3)

306/361

Partial 

plan π112

Partial 

plan π113

Partial 

plan π121

Partial 

plan π123

b before aa before b

a1

a2 a3 a4 a2 a3 a4

Partial 

plan π1

Partial plan π

Partial 

plan π11

Partial 

plan π111

Partial 

plan π12

Partial 

plan π122

PSP choices

1. find an establisher for g1

2. solve the thread

3. find a establisher for g2



Serialization tree example (2/3)

307/361

b before aa before b

a2

a1 a1

b before aa before b

a1 a1

b before aa before b

a1 a1

a3 a4

Partial 

plan π1

Partial plan π

Partial 

plan π11

Partial 

plan π111

Partial 

plan π12

Partial 

plan π2

Partial 

plan π3

Partial 

plan π121

Partial 

plan π21

Partial 

plan π211

Partial 

plan π22

Partial 

plan π221

Partial 

plan π31

Partial 

plan π311

Partial 

plan π32

Partial 

plan π321

PSP choices

1. find a establisher for g2

2. solve the thread

3. find an establisher for g1

Serialization tree example (3/3)

• All serialization trees lead to exactly the same set of solutions

• All serialization trees do not contain the same number of nodes

• The speed of PSP varies significantly depending on the number of
node explore. Thus PSP speeds depends on the order in which its
selects flaws to resolve

Question
How to choose the flaw to resolve to reduce the number of nodes to
explored ?

308/361

The FAF-Heuristic

Idea
The fewest alternatives first (FAF) is to choose the flaw having the
smallest branching factor as early as possible in oder to limit the cost of
eventual backtracks.

• The FAF-heuristic is easy to compute ⇥(n) where n is the number
of flaws in a partial plan

• The FAF-heuristic works relatively well compared with other flaw
selection heuristics

309/361

Other Flaw-Selection Heuristics

• Zero-commitment: chooses flaw that has not already been choosen
in order to cut as soon as possible unachievable branches (low
overhead)

• Least-commitment: always selects a open goal which generates the
fewest refined plans (higth overhead)

• Least-cost-flaw-repair : same as “Least-commitment” applied to the
threat too (higth overhead)

• LIFO: Last in last out choice of the flaw (low overhead)

• ZLIFO: Threat are selected depending “LIFO” strategy and open
goal depending “Zero-commitment” (low overhead)

310/361



Resolver-Selection Heuristics

• The technics presented for state space planning cannot be applied
• because they rely on relaxed distances between states, while states

are not explicit in the plan space

• Hence, we have to come up with other means to rank the candidate
nodes, i.e., partial plan, at a search point

311/361

Simple Heuristics (1/2)

Idea
The choice of the resolver is based on an A⇤ best-first search strategy
with a heuristic

f (⇡) = g(⇡) + h(⇡)

where

• g(⇡) the cost of the partial plan ⇡ and

• h(⇡) estimate of the additionnal cost of the best complete solution
that extends ⇡

312/361

Simple Heuristics (2/2)

• To elaborate the simple heuristic we can used:
1. the number of actions (S)
2. the number of open goals (OC)
3. the number of causal links (CL)
4. the number of threats (UC)

• For instance UCPOP uses : S + OC + UC

• Experiments show that S + OC works relatively well compared with
other heuristic combinaisons

Note
Due to causal links addition refinement mechanism, f (⇡) is not
admissible

313/361

Regression AND/OR Graph heuristic

Regression AND/OR Graph heuristic
For each OC (⇡), the heuristic compute an AND/OR graph along
regression steps defined by ��1 down to some fixed level k . Let
⌘k(OC (⇡)) be the weighted sum of:

1. the number of actions in this graph that are not in ⇡ and

2. the number of subgoals remaining in its leaves that are not in the
initial state s0

Note

• ⌘k incurs a significant overhead

314/361



Heuristic based on planning graph

Planning Graph Heuristic
Instead of computing for each OC (⇡) a regression AND/OR graph, this
heuristic builds a planning graph once for the planning domain and uses
it as follow in order to estimate ⌘k(OC (⇡)):

⌘k(OC (⇡)) =

8
>>><

>>>:

0 if OC (⇡) ✓ s0

1 if 8a 2 A, a is not revelant for OC (⇡)

maxp{�⇡(a) + ⌘(��1, a)) | p 2 OC (⇡) \ effects+(a)
and a is relevant for OC (⇡)} otherwise

9
>>>=

>>>;

with �⇡(a) = 0 when a is in ⇡ and �⇡(a) = 1 otherwise

315/361

To go further

Exercice

Exercice 1
How many serialization trees are there for the AND/OR tree in slide
306 ?

316/361

Further readings

X. Nguyen, S. Kambhampati, and R. Nigenda.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and csp search.
Artificial Intelligence, 135(1-2):73 124, 2002.

A. Gerevini and L. Schubert.
Accelerating partial-order planners: Some techniques for
effective search control and pruning.
Journal of Artificial Intelligence Research, 5(1):95-137, 1996.

B. Bonet and H. Geffner.
Planning as heuristic search: New results.
In Proceedings of European Conference on Artificial Intelligence,
pages 360 372, 1999.

317/361


