Part IX

Hierarchical Task Network

Planning

318/361

HTN Principle

HTN Principle

HTN planning proceeds by decomposing nonprimitive tasks recursively
into smaller and smaller subtasks, until primitive tasks are reached that
can be performed directly using the planning operators.

320/361

Introduction

o Hierarchical Task Network (HTN) planning is like classical planning:
e each state of the world is represented by a set of atoms
e each action corresponds to a deterministic state transition
e In HTN planner, the objective is not to achieve a set of goals but
instead to perform some set of tasks
e The imput to the HTN planning system includes

1. a set of operators (similar to classical planning)
2. a set of methods each of which is a presciption for how to
decompose some task into some set of subtasks (smaller tasks)

e HTN planning has been more widely used for practical applications

because HTN methods provide a convenient way to write
problem-solving “recipes” that correspond to human expertise.

319/361
HTN Example (1/2)
cranet .-A crane2 --A crane3 --A
Initial
State
A~
o = = =
[/ /[/
1a a
: loc1 = * loc2 = loc3
cranel .-A
Goal
loc1 loc2 loc3
321/361

HTN Example (2/2)

Example (Take and put method)

take-and-put(c,k,/1,12,p1,p2,x1,x2)
precond: top(pI,/1), on(c,x1) ;; true if p1 is not empty
attached(p1,/1), belong(k,/1) ;; bind I1 and k
attached(p2,/2), top(x2,p2) ;; bind 12 and x2
subtasks: (take(k,/1,c,x1,p1), put(k,/2,c,x2,p2))

To accomplish the task of moving the topmost container of a pile pI to
another pile p2, we can use :

1. the DWR domain’s take operator to remove the container from pI
and

2. the put operator to put it on the top.

322/361

STN Planning

e STN (Simple Task Network) is a simplified version of HTN

e In STN, terms, literals, operators, actions and plans definitions are
the same as in classical planning

e However, STN language includes:

1. tasks
2. methods
3. task networks

323/361

STN Planning

Tasks Definition

frametitle
Definition (Task)
A task is an expression of the form
(7 o o o g)

such

e tis a task symbol, i.e., an operator symbol (primitive task) or a method symbol
(nonprimitive task)

® r,...,rg are terms

Notes

1. A task is ground is all of the terms are ground; otherwise, it is unground

2. An action a = (name(a), precond(a), effects(a)) accomplishes a ground primitive
task t in a state s if name(a) = t and a is applicable to s.

324/361

Task Networks Definition

Definition (Simple Task Network)

A simple task network is an acyclic digraph
w = (U, E)
in which
e U is the node set such that each node u € U contains a task t,

o E is the edge set that defines a partial ordering of U, e.g., u < v iff there is a
path from u to v

Notes

1. w is ground is all of the tasks {t, | u € U} are ground; otherwise w is unground

2. w is primitive is all of the tasks {t, | u € U} are primitive; otherwise w is
nonprimitive

325/361

STN Method Definition

Definition
An STN method is a 4-tuple

m = (name(m), task(m), precond(m), network(m))
in which

e name(m), the name of the method, i.e., a expression if the form
m(xi,...,%2) where n is an unique method symbol and xi, ..., x
are all of the variables symbols that occurs anywhere in m

e task(m) is a non primitive task
e precond(m) is a set of literals call method’s preconditions

o network(m) is a task network whose tasks are called the subtasks of
m

327/361

Task Networks Example

Example (Task Network)
In the DWR domain, let three tasks:

o t; = take(cran2,locl,cl,c2,pl) a primitive task
e t, = put(cran2,loc2,c3,c4,p2) a primitive task

e t3 = move-stack(pl,q) a non primitive task
and two task networks such Vi, u; = ti:

o wy = ({ul, u2,u3}, {(ul, u2), (u2,u3)})
o wy = ({ul, u2},{(ul,u2)})

Since w; is totally ordered, we would usually write wy = (t1, t2)
Since ws, is ground and primitive, it corresponds to the plan
(take(cran2,locl,cl,c2,pl), put(cran2,loc2,c3,c4,p2))

326/361

STN Method Example (1/2)

Example (DWR methods)
recursive-move(p,q,c,x)

task: move-stack(p,q)

precond: top(c,p), on(c,x) ;; true if p is not empty

subtasks: (move-topmost-container(p,q), move-stack(p,q))

;; the second subtask recursively moves the rest of the stack

do-nothing(p,q)

task: move-stack(p,q)

precond: top(pallet,p), on(c,x) ;; true if p is empty

subtasks: () ;; no substasks because we are done

328/361

STN Method Example (2/2)

Example (DWR methods)
move-each-twice()

task: move-all-stacks()

precond: ;; no preconditions

network: u; = move-stack(pla,plb), u» = move-stack(plb,plc),
us = move-stack(p2a,p2b), us = move-stack(p2b,p2c),
us = move-stack(p3a,p3b), ue = move-stack(p3b,p3c),

{(u1, u2), (u3, ua), (us, us) }

329/361

Applicale and Relevant Method Example

Example (Applicable and Revelant Method)

Let t be the nonprimitive task move-stack(pla,q), s the state of the world show in
previous slide, and m be the method instance recursive-move(pla,plb,cll,c12). mis
applicable to s, revelant for t under substitution ¢ = {q < p1lb}, and decomposes t
into:

6(t, m, o) = (move-topmost-container(pla,plb),move-stack(pla,plb))

e Graphical representation of the method decomposition:

move-stack(p1a,q)

{a <—p1b}
recursive-move(pia,pib,c11,c12)
o N
move-topmost-container(p1a,p1b)] [move-stack(p1a,p1 b)

331/361

Applicale and Relevant Method

Definition (Applicable Method)

A method instance m is applicable in a state s if precond*(m) C s and
precond™(m) N's = 0.

Definition (Revelant Method)

Let t be a task and m a method instance, if there is a substitution o
such that o(t) = task(m), then m is revelant for t, and the
decomposition of ¢t by m under o is 6(t, m, o) = network(m). If m is
totally ordered, we may write 6(t, m, o) = subtasks(m).

Note

For planning, we will interested in finding method instances that are
both applicable in the current state and relevant for some task we are
trying to accomplish.

STN Planning Domain Definition

330/361

Definition (STN Planning Domain)
An STN planning domain is a pair

D= (0,M)
where

e O is a set of operators

e M is a set of methods.

D is a total-order planning domain if every m € M is totally ordered.

332/361

STN Planning Problem Definition Solution Plan

Definition (Solution Plan)

Let P = (so, w, O, M) be a planning problem. Here are the cases in which a plan
m = (a1,...,an) is solution for P:

Definition (STN Planning Problem)
An STN planning problem is a 4-tuple

P = (s0, w, O, M) e Case 1: w is empty. Then 7 is a solution for P is 7 is empty, i.e., m = ().

o Case 2: There is a primitive task node u € w that has no predessors in w. Then
where 7 is a solution for P is a1 is applicable to t, in sp and the plan 7 = (az, ..., an)
is a solution of the planning problem:

e sp is the initial state
P/ = (’7(507 31), w— {U}, 07 M)
e w is a task network called the initial task network

o Case 3: There is a nonprimitive task node u € w that has no predessor in w.

D= (O’ M) isa STN planning domain Suppose there is an instance m of some method in M such that m is revelant for
. . . t, and applicable in sp. Then 7 is a solution for P is there is a task network
P is a total-order planning problem if w and D are totally ordered. o & 6, m o) Sl s o 6 8 gl e (i P @ (U
333/361 334/361
Solution Plan Example (1/2) Solution Plan Example (2/2)

e Example of tree decomposition for the solution plan

Example (DWR Solution Plan)

Let P = (sp, w, O, M), where sy is the state initial state of the DWR
problem, w = (move-stack(pla,plb)), O is the usual set of operators,
and M is the set of methods. Then there is only one solution for P:

move-stack(pia,q)

recursive-move(pla,p1b,c11,c12)

/
7 _ (take(cranel,Ila,cll,c12,p1a), move-topmost-container(pia,p1b)] move-stack(pia,p1b)
take-and-put(...) recursive-move(p1a,p1b,c12,pallet
put(cranel,llb,c11,pallet,plb),
P N P N
ta ke(CranelJla,ClZPa”etvP11)7 [take(crane1,I1a,c11,c12,p1a)] [pul(crane1,I1b,c11,pallet,p1b)] [move-top-container(ma,p1b)J [move-stack(p1a,p1b)J
put(cranel,l1b,c12,c11,plb)) ako-and-put(..) donothing(pta.p1o)

P —
[take(crane1,l1a,c12,pallet,pia)] [put(cranet,l1b,c12,c11,p1b)]

335/361 336/361

Total-order Forward Decomposition

Algorithm (TFD(s, (t1, ..., t), O, M))

if k =0 then return an empty plan = = ()

else if t; is primitive then

active < {(a, o) | a is a ground instance of an operator in O, o is a
substitution such that a is revelant for o(t1), and a is applicable to s }

if active = () then return Failure

nondeterministically choose any (a, o) € active

Total-Order STN Planning e TEDCr(5.2). o((ta. ... t)), OLM)

if = = Failure then return Failure

else return a - 7

else if t; is nonprimitive then

active <— {(m, o) | m is a ground instance of a method in M, o is a
substitution such that m is revelant for o(t1), and m is applicable to s }

if active = () then return Failure

nondeterministically choose any (m, o) € active

w < subtasks(m)-o((t2,. .., tx))

return TFD (s, w, O, M)

337/361

TFD Comparaison

1. Like Forward-search, TFD considers only actions whose preconditions

are satisfied in the current state. Moreover, like Backward-search, it . .
considers only operators that revelant for the task to achieve Partial-Order STN Planmng

= greatly increase the efficiency of the search

2. Like Forward-search, TFD generates actions in the same order in
which they will be executed

= it knows the current state of the world

338/361

Partial-Order STN Planning

Why partial-order planning is interested to be considered ?

= because not all planning domains can be rewritten into total-order
planning

339/361

Partial-Order STN Planning: Example (2/5)

Example (DWR methods to move two containers at once)

transfer2(cl1,¢2,/1,12,r) ;; method to transfert c1 and c2
task: transfer-two-containers(c1,c2,/1,12,r)
precond: ;; no preconditions
subtasks: (transfer-one-container(c1,/1,/2,r),
transfer-one-container(c2,/1,12,r))
transferl(c,/1,/12,r) ;; method to transfert c
task: transfer-one-container(c,/1,/2,r)
precond: ;; no preconditions
network: u; = setup(c,r), u2 = move-robot(/1,/2), uz = finish(c,r),
{(u1, w2), (u2, us)}
movel(r,/1,12) ;; method to move r if r is not at I12
task: move-robot(/1,/2)
precond: at(r,/I)
subtasks: (move(r,/1,/2))

341/361

Partial-Order STN Planning: Example (1/5)

e Consider the following initial state for the DWR domain:

cranel crane2

O O; p22
AR/
o/a /7
pit pi2 p21

il 12

340/361
Partial-Order STN Planning: Example (3/5)
Example (DWR methods to move two containers at once)
move0(r,/1,12) ;; method to move r if r is already at 12
task: move-robot(/1,/2)
precond: at(r,/2)
subtasks: () ;; no subtasks
do-setup(c,d,k,l,p,r) method to prepare for moving a container
task: setup(c,r)
precond: on(c,d), in(c,p), belong(k,/), attached(p,/), at(r,/)
network: uy = take(k,/,c,r), u2 = put(k,/,c,d,p), {(uv1,u2)}
unload-robot(c,d,k,/,p,r) ;; method to finish after moving a container
task: finish(c,r)
precond: attached(p,/), loaded(r,c), top(d,p), belong(k,/), at(r,/)
network: vy = unload(k,/,c,r), uz = put(k,l,c,d,p), {(uz, u2)}
342/361

Partial-Order STN Planning: Example (4/5)

[transfer-two-containers(c1,c2,I1,12,r1)]

/ \

[transfer-one-container(c1,11,12,r1) J [transfer-one-container(c2,11,12,r1) J
————

setup(c1,r1) setup(c2,r1) move(r,11,12) finish(c1,r1)

. L .
[take(...)] [load(...)] [take(...)] [load(...)] unload(.) | [put(.)

Interleaved Decomposition Tree

finish(c2,r1)

put(...)

unload(...)

e The subtasks of the root are unordered, and their subtasks are
interleaved

e Decomposition tree like this cannot occur in total-order STN
planning domain

343/361

Partial-order Forward Decomposition

Algorithm (PFD(s, w, O, M))

if w = () then return an empty plan = = ()

nondeterministically choose any u € w that as no predessors in w

else if t1 is primitive task then

active < {(a, o) | a is a ground instance of an operator in O, ¢ is a
substitution such that a is revelant for o(t1), and a is applicable to s }

if active = () then return Failure

nondeterministically choose any (a, o) € active

7 < PFD(y(s, a),0(w — {u}), O, M)

if 7 = Failure then return Failure

else return a - 7

else if t1 is nonprimitive then

active < {(m, o) | m is a ground instance of a method in M, o is a
substitution such that m is revelant for o(t1), and m is applicable to s }

if active = () then return Failure

nondeterministically choose any (m, o) € active

nondeterministically choose any task network w’' € 6(w, u, m, o)

return PFD(s, w’, O, M)

345/361

Partial-Order STN Planning: Example (5/5)

[transfer-two-containers(c1,c2,11,12,r1)]

'

[setup-both-containers(c1,c2,r1)] [move(r,l1,|2)] [finish-both-containers(c1,c2,r1)]

\

finish(c2,r1)

unload(...)

[take(“.)] Ioad(...)] [take(...)] [Ioad(...)] [unload(...)]

Noninterleaved Decomposition Tree

e To obtain a totally ordered tree, the best is to write method that
generate a noninterleaved decomposition tree

344/361

HTN STN Planning

HTN Planning

e In STN planning, two kinds of constraints are associated with a
method:

1. preconditions
2. ordering constraints

e Ordering constraints are explicitely represented in the task network
but not preconditions

e HTN planning is a generalization of SNT planning that give the
planning procedure more freedom about how to construct the task
network

346/361

Task Network Constraints

e HTN Task Network can handle the following kinds of constraints:

1. A precedence constraint is an expression of the form u < v, where u and v
are task node. Its meaning is identical to the edge (v, v) in STN planning.

2. A before-constraint is a generalization of the notion of a precondition in
STN planning. It is a constraint of the form before(U’,), where U’ C U is
a set of task nodes and [is a literal.

Example

For instance, consider the task u is a task node for which t, = move(r2,12,13). Then
the constraints before({u}, at(r2,12)) says that r2 must be at 12 just before we move
it from 12 to I3.

3. An after-constraint has the form after(U’, /). It is like a before-constraint
except that it says that / must be true in the state that occurs just after last
(')

4. A between-constraint has the form between(U’, U”, /). It says that literal /
must be true in the state just after last (U’, 7), the state just before first

(U”,7) and all of the states in between
348/361

Task Network Definition

Definition
A task network is a pair
w = (U, C)

where

e U is a set of task nodes and

e C is a set of constraints.

HTN Methods: Definition

347/361

Definition (HTN Method)
An HTN method is a 4-tuple

m = (name(m), task(m), subtasks(m), constr(m))

in which the elements are described as follows:

e name(m), the name of the method, i.e., a expression if the form

m(xi,...,x) where n is an unique method symbol and xq, . ..

are all of the variables symbols that occurs anywhere in m
e task(m) is a non primitive task

o (subtasks(m), constr(m)) is a task network

, X2

349/361

Dynamic of HTN Methods

Suppose that w = (U, C) is a task network, u € U is a task node, t, is it task, m is an
instance of a method in M, and task(m) = t,. Then m decomposes u into subtasks(m’),
producing the task network:

§(w, u,m) = ((U — {u}) U subtasks(m’), C" U constr(m’))
where C’ is the following modified version of C:

e For every precedence constraint that constains u, replace it with precedence constraints
containing the node of subtasks(m'’)

Example

If subtasks(m') = {u1, u>}, then we would replace u < v with u3 < v and ux < v

e For every before, after, between constraints in which there is a set of task nodes U’ that
contains u, replace U’ with (U’ — {u}) U subtasks(m")

Example

If subtasks(m’) = {u1, u>}, then we would replace before({u, v}, /) with
before({u1, u2, v}, /)

350/361

HTN Methods: Example (2/2)

Example (DWR HTN Methods of example slide 321)
move0(r,/1,12) ;; method to move r if r is already at 12

task: move-robot(/1,/2)
subtasks: ;; no subtasks
constr: before({uo}, at(r,/2))

do-setup(c,d,k,I,p,r) method to prepare for moving a container
task: setup(c,r)
subtasks: u; = take(k,/,c,r), u> = put(k,/,c,d,p)
network: ui < u», before({u1}, on(c,d)), before({u1}, attached(p,/)),
before({u1}, in(c,p)), before({u1}, belong(k,/)), before({u1}, at(r,/))

unload-robot(c,d,k,/,p,r) ;; method to finish after moving a container
task: finish(c,r)
subtasks: u; = unload(k,/,c,r), u2 = put(k,/,c.d,p)
network: u1 < uz, before({u1}, attached(p,/)), before({u1}, loaded(r,c)),
before({u1}, top(d,p)), before({u1}, belong(k,/)), before({u1}, at(r./))

352/361

HTN Methods: Example (1/2)

Example (DWR HTN Methods of example slide 321)

transfer2(cl,c2,/1,12,r) ;; method to move cl and c2 from pile p1 to pile p2

task: transfer-two-containers(c1,c2,/1,/2,r)

substasks: u; = transfer-one-container(c1,/1,/12,r), u> =
transfer-one-container(c2,/1,12,r)

constr: u; < Uz

transferl(c,/1,/12,r) ;; method to transfert c

task: transfer-one-container(c,/1,/2,r)
subtasks: u; = setup(c,r), u2 = move-robot(/1,/2), us = finish(c,r)
constr: uy < U2 U2 < U3

movel(r,/1,12) ;; method to move r if r is not at 12

task: move-robot(/1,/2)
subtasks: move(r,/1,/2)
constr: before({u1}, at(r,/1))

351/361

HTN Planning Domain and Problem Definition

Definition (HTN Planning Domain)
An HTN planning domain is a pair D = (O, M) where

e O is a set of operators

e M is a set of methods.

Definition (HTN Planning Problem)
An HTN planning problem is a 4-tuple P = (s, w, O, M) where

e 5p is the initial state
e w is a task network called the initial task network
e D= (0,M)is aSTN planning domain

353/361

HTN Solution Plan Definition (1/2) HTN Solution Plan Definition (2/2)

Definition (HTN Solution Plan)

e Case 1: If w = (U, C) is primitive, then a plan m = (a1,..., ax) is a solution for P if
there is a ground instance (U’, C’) of (U, C) and a total ordering (us, ..., ux) of the

node U’ such that all the following condition hold: e .
. Definition (HTN Solution Plan)

1. The action in 7 are the ones named by the node w1, ..., u, i.e.,) o) i)
e Case 2: If w = (U, C) is nonprimitive, (i.e., al least one task in U is

name(a;) = t,; for i =1,...k
nonprimitive), then a plan 7 is a solution for P if there is a sequence

2. The plan 7 is executable from sp

3. The total ordering (u1, ..., ux) satisfies the precedence constraints in C’, of task decompositions that can be applied to w to produce
i.e., C’ contains no constraint u; < uj such that j </ primitive task network w’ such taht 7 is a solution for w’. In this
4. For every constraints before(U’, /) in C’, I holds in the state s;_; that case, the decomposition tree for 7 is the tree structure
immediately precedes action a;, where a; is the action named by the first corresponding to these task decompositions.
node of U’.

5. For every constraints after(U’, /) in C’, I holds in the state s; produced by
the action aj, where a; is the action named by the last node of U’.

6. For every constraints between(U’, U”, 1) in C’, | holds in every state that
comes between a; and a;, where a; is the action named by the last node of

!/ H . 1"
U’ and a; the action named by the first node of U". 261 355/361

HTN Planning Procedure

Algorithm (Abstract-HTN(s, U, C, O, M))

if (U, C) can be shown to have no solution then return Failure
else if U is primitive then
if (U, C) has no solution then return Failure

else return nondeterministically a plan 7 from any such solution Com paraison and extensions of
else .
HTN Planning

choose a nonprimitive task node u € U

active < {m € M | task(m) is unifiable with t,}

if active ## () then nondeterministically choose any m € active
o < an mgu for m and t, that renames all variables of m

(U, C") < d(a(U, C),0(u),a(m))

return Abstract-HTN(s, U’, C’, O, M)

end

356/361

HTN versus Classical Planning

Complexity of plan existance for HTN planning

e STN planning and thus HTN planning can be used to encode undecidable problem, but
not classical planning

e However STN and HTN language can produce undesirable effects

Example (Recursive method calls)
method1()

task: task1()

precond: ;; no preconditions

subtasks: opl(),
task1(), op2()

method2()

task: task1()
precond: ;; no preconditions
subtasks: ;; no subtasks

op2()

precond: ;; no preconditions

op1()

recond: ;; no preconditions
4 - effects: ;; no effects
effects: ;; no effects

The solutions to this problem are as follows:
T = <>7 w1 = <0P1()7 0P2()>, ™ = <0P1()7 0p1()7 op2(), 0P2()>

357/361

HTN Planning Extensions

e The main extensions of HTN planning are:

1. Function Symbols. If we allow the planning language to contain
function symbols, then aguments of an atom, or task are no longer
restricted to being constant symbol of variable symbols.

2. Axioms. To incorporate axiomatic inference, we will need to used
theorem prover as a subroutine of the planning procedure.

3. Attached Procedures. We can modify the precondition evaluation
algorithm to recognize that certain terms or predicate symbols are to
be evaluated by using attached procedure rather that by using the
normal theorem prover.

4. Time. It is possible to generalize PFD and Abstract-HTN to certain
kinds of temporal planning, e.g., to deal with action that have time
durations and may overlap with each other.

359/361

Restrictions Must the
on nonprimitive HTNs be Are variables allowed?
tasks totally ordered 7 No Yes

No Undecidable? Undecidable??
None Yes In exptime in dexptimed

pspace-hard expspace-hard

“Regularity” (<1
nonprimitive task, | Does not pspace- expspace-
which must follow | matter complete complete®
all primitive tasks)
No nonprimitive No NP-complete NP-complete
tasks Yes Polynomial time | NP-complete

2 Decidable if we impose acyclic restrictions
b Undecidable even when the planning domain is fixed in advance

d . and psp: I

© In pspace when the planning domain is fixed in
domains

! means doubl ial time

To go further

for some fixed planning

358/361

Exercices Further readings

Exercice 1
Write totally ordered methods to generate the noninterleaved decomposition tree
similar to the one shown slide 344. @ P. Bercher. R. Alford. D. Holler:

et A Survey on Hierarchical Planning - One Abstract Idea, Many

Suppose we write a deterministic implementation of TFD that does a depth-first Concrete Realizations.

search of its decomposition tree. Is this implementation complete ? Why or why not [JCAI 2019: 6267-6275

i @ D. Holler, G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier,
R. Alford:

In example slide 329, suppose we allow the initial state to contain an atom HDDL: An Extension to PDDL for Expressing Hierarchical

need-to-move(p,q) for each stack of the containers that needs to be moved from Planning Problems.
som pile p to some other q. Rewrite the methods and operators so that instead of AAAI 2020: 9883-9891
being restricted to work on three stacks of containers, they will work correctly for an

Exercice 3

arbitrary number of stacks and containers.

360/361 361/361

